GRUNDFOS SUBMERSIBLE MOTOR GUIDE

MS/MMS

Application - Installation - Maintenance 60Hz, Single-Phase and Three-Phase Motors

History of GRUNDFOS

Founded in 1945 in Bjerringbro, Denmark, Grundfos is a global pump and pumping systems provider with an annual production of more than 16 million units. To support plans for strategic growth in North America, Grundfos acquired Paco, Peerless and Yeomans Chicago, which have added valuable resources and competencies to the region.

These acquisitions enable Grundfos to offer a wide range of solutions for both water and wastewater applications. From multistage industrial and submersible pumps, to disinfection systems and chemical feed systems, the Grundfos portfolio offers solutions to your individual needs.

Scan QR Code to view or download the pdf version. For printed copies please go to the Grundfos literature site.

SAFETY FIRST!

Do not think that reading this manual in any way, allows you or anyone else to operate electrical test equipment or work with electrical equipment, without proper training and license. This type of work should only be carried out by someone trained and certified.

ATTENTION! IMPORTANT INFORMATION FOR INSTALLERS OF THIS EQUIPMENT!

This equipment is intended for installation by technically qualified personnel only. Failure to install this equipment in compliance with national and local electric codes, and within Grundfos recommendations may result in electrical shock or fire hazard, unsatisfactory performance, equipment failure and other problems.

Additional Grundfos installation information is available in Data Booklets and in Instruction and Owners Manuals (I&O). To obtain a Data Booklet or I&O, contact Grundfos directly or a local Distributor.

WARNING!

Serious or fatal electrical shock may result from failure to connect the motor, control enclosures, metal plumbing, and all other metal near the motor or motor cable, to the power supply ground terminal using wire no smaller than motor cable wires.

To reduce the risk of electrical shock, disconnect power supply before working on, or around the water system.

Do NOT use motor in swimming areas.

Applications:

	•
Storage / Number of Starts / Installation Position	6
Transformer Capacity / KVA Requirements / Identifying Transformer Types	7
Generators / Guidelines / Sizing	9
Check Valves / Up thrust / Down Thrust / Cavitation / Water Hammer	.10
Motor Cooling / Maximum Temperature / Minimum Flow / Flow Sleeve Requirements	.11
Proper Grounding Required	.15

Single-Phase Motors:

3-Wire Control Box	16
Cable Selection 115V 230V	18
MS402 & MS4000 / 2-Wire & 3-Wire Motor Specification	19
Buck-Booster Transformers	

Three-Phase Motors:

Cable Selection 200-208V / 230V / 460V and 575V	21
4" Three-Phase Motor Specification / Fuse and Breaker MS402 / MS4000	
6" Three-Phase Motor Specification / Fuse and Breaker MS6000C	27
6" 8" 10" Three-Phase Motor Specification / Fuse and Breaker MMS6 / MMS8000 / MMS10000	29
Submersible Motor Installation Best Practices	
Motor Dimensions and Weights / MS402 / MS4000 / MS6000C / MMS6 / MMS8000 / MMS10000	
Submersible Installation Record	

Motor Monitoring / Protection / Maintenance:

MP204 Motor Protection / Codes / Wiring Diagrams / External Current Transformers	
ATL Across-The-Line / YD Wye-Delta / AF Autotransformer / PW Part Winding Starting Illustrations	
Three Phase Power Unbalance	
Grundfos GO	
Phase Converters / Reduced Voltage Starters	
Variable Frequency Drives	

Trouble Shooting and Maintenance:

Insulation Resistance / Supply Voltage Check / 3-Wire Control Box	61
3-Wire Control Box Wiring Diagrams	63
SQE with CU301	
CU331SP / CUE Drives (VFD) / Generator Sizing on Drive / Pressure Tank Sizing on Drives	71
-	
CU331SP / CUE Drives (VFD) / Generator Sizing on Drive / Pressure Tank Sizing on Drives SQE / CU301 Maintenance and Troubleshooting CU331SP / CUE Maintenance and Troubleshooting	71 74

Motor Storage

Grundfos submersible motors contain food grade liquid for lubrication, cooling and freeze protection. The motor liquid contains monopropylene glycol. Minor motor liquid loss will not damage the motor. Grundfos MS402 motors have filtered check valves that allow water into the motor is not uncommon during operation to replace any fluid that may escape as the motor temperature changes.

Motors that have been <u>removed</u> from service may no longer have frost protection due to this fluid exchange, and should not be stored in temperatures below 32°F (0 °C).

Long-term storage of submersible motors can have a negative effect on shaft seal and motor fluid level. Storage time should not exceed 5 years without periodic inspection. Motor storage time can be extended to a maximum of 5 years by rotating the shaft periodically and by checking the motor liquid level once each year. Contact a Grundfos Technical Sales Manager (TSM) for proper motor liquid check procedure.

Number of Starts

Grundfos MS and MMS motors are designed for continuous or intermittent operation. Frequent motor starts can create excessive heat in the motor windings and negatively affect the life of the motor and other system components. Motor start draws more amperage than run. Higher amp draws make higher heat that can cause damage to motor winding or insulation.

Refer to Table 1 for maximum and minimum number of starts per hour and per day. For maximum motor life, the number of starts should not exceed these limits. Proper pump selection and system setup will allow for operation within these guidelines.

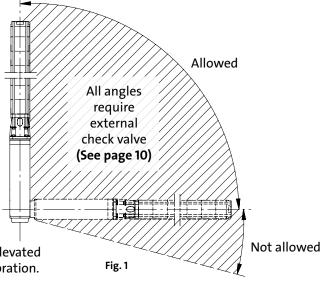
Installation Position

Motors can be installed either horizontally or vertically. **See Fig. 1** in either position, the motor must be sleeved and fully submerged at least one foot to prevent vortex (air entering intake).

When a motor is installed in a horizontal position, the shaft must not fall below the horizontal plain. Grundfos recommends that a Flow Sleeve be installed on all motors mounted in a horizontal position. Make sure that the motor is fully supported when mounted in the horizontal position. See Flow Sleeve section on **page 12**.

Note: <u>Do not</u> let pump sit on bottom of tank. Place on an elevated surface for cooling, to avoid injesting debris and absorb vibration.

Number of Motor Starts


Motor types Standard, N, R, versions	HP ranges	Minimum starts per year	Maximum starts per hour	Maximum starts per day
MS 402	1/2 - 2	1	100	300
MS 4000	2 - 10	1	100	300
MS 6000C	7-1/2 - 40	1	30	300
MMS 6	50 - 60	1	10	70
MMS 8000	40 - 150	1	8	60
MMS 10000	175 - 250	1	6	50
Note Using VED	can start m	ators more f	requestly	Table 1

Note: Using VFD can start motors more frequently. Standard = 304 Stainless Steel

N = 316 Stainless Steel

R = 904L Stainless Steel

Motor installed position does not affect the number of motors start table. Same number starts vertical, angled or horizontal.

Transformer Capacity

Adequately sized transformers are necessary to satisfy the kVA requirements of the submersible motor. Undersized transformers may supply voltage below that required for proper motor operation.

Other loads on the system must be added directly to the kVA requirement of the submersible motor for proper sizing of the transformer bank. **See Table 2** for proper transformation sizing.

	Submersil	ole Motors		Smallest kVA Rating - Each Transformer		
Motor HP /	kW Rating	kW Rating	Total Effective	Open WYE or DELTA	WYE or DELTA	
Single Phase	Three Phase	KVV Kating	kVA Required *	2 Transformers	3 Transformers	
1-1/2	1-1/2	1.1	3.0	2.0	1.0	
2	2	1.5	4.0	2.0	1.5	
3	3	2.2	5.0	3.0	2.0	
5	5	3.7	7.5	5.0	3.0	
7-1/2	7-1/2	5.5	10.0	7.5	5.0	
10	10	7.5	15.0	10.0	5.0	
15	15	11.0	20.0	15.0	7.5	
	20	15.0	25.0	15.0	10.0	
	25	18.5	30.0	20.0	10.0	
	30	22.4	40.0	25.0	15.0	
	40	29.8	50.0	30.0	20.0	
	50	37.3	60.0	35.0	20.0	
	60	44.7	75.0	40.0	25.0	
	75	55.9	90.0	50.0	30.0	
	100	74.6	120.0	65.0	40.0	
	125	93.2	150.0	85.0	50.0	
	150	111.9	175.0	100.0	60.0	
	175	130.5	200.0	115.0	70.0	
	200	149.2	230.0	130.0	75.0	

Transformer Capacity KVA Requirements

Table 2

* Pump motor kVA requirements only - Does not include allowances for other loads.

Note: Standard kVA ratings are shown in **Table 2**. If the utility company allows transformer loading higher than standard, higher loading values may be used to meet total effective KVA required. Correct voltage and balance must be maintained.

Transformer configurations like Open Delta or Wye Connections (2 Pot Systems) are common in power distribution systems. Care must be taken with these transformer configurations to assure a consistent voltage balance, as voltage unbalance can lead to a reduced life span of the motor. Refer to **pg. 45** for proper calculation of voltage/current balance.

When connecting a Grundfos submersible motor to an Open Delta or Wye connections transformer system, consider the following;

1) These transformer connections deliver 3 phase current to the motor. They differ from 3-pot systems in that the one high voltage leg will have a higher current value, voltage will not be 120 degrees apart and the third voltage leg is produced by the 2-pot transformer system.

2) An Open Delta or Wye transformer configuration will show a severe voltage/current unbalance.

3) The Open Delta or Wye transformer connection can only be operated at 58% of the 3-pot transformer configuration.

In motor control systems where a VFD (Variable Frequency Drive), reduced voltage starters and/or pump protection equipment has been installed; Open Delta or Wye connected transformer systems can fault on loss of leg on the incoming power side. To remedy this fault condition, loss of leg protection can be disabled. However, disabling the loss of leg fault protection limits the total motor protection available.

Full Three-Phase Power Supply

For 3 Phase systems, a full 3 Phase Delta transformer configuration is recommended. This system might include three individual transformers, (one for each voltage leg) or one single 3 phase transformer that includes all three transformers in one contained unit. Although this system delivers voltage/current on each individual power leg it does not guarantee good balanced power. Heavy single-phase loads or faults on the transmission line could produce an unbalanced load. It is recommended that the voltage/current be inspected for balance and adjusted accordingly to achieve the lowest unbalance possible.

Generators (two types):

internally regulated and externally-regulated.

Internally-regulated generators have an additional winding in the generator stator. The extra winding senses the output current and increases/ decreases the output voltage automatically.

Externally-regulated generators use an externally mounted voltage regulator that senses output voltage. As the voltage dips at motor start-up, the regulator increases the output voltage of the generator. An externally-regulated generator is to be sized approximately 50% higher in kW/ kVA rating to deliver the same starting torque as an internally regulated generator. **Internally-regulated generators normally have the best running efficiency**.

Generator frequency (Hz) should match the motor nameplate frequency rating. Operating a motor at a frequency other than its rated frequency will effect pump performance and could overload the motor.

Sizing a generator to the motor is critical. **Table 3 (to the right)** should be used as a guideline for selecting the proper generator. The generator manufacturer may also have helpful guidelines for proper sizing.

НР	kW	Externally	Regulated	Internally Regulated		
TIF	KVV	kW	kVA	kW KV/		
1/2	0.37	2.0	2.5	1.5	1.9	
3/4	0.56	3.0	3.8	2.0	2.5	
1	0.75	4.0	5.0	2.5	3.1	
1-1/2	1.10	5.0	3.3	3.0	3.8	
2	1.50	7.5	9.4	4.0	5.0	
3	2.20	10.0	12.5	5.0	6.3	
5	3.70	15.0	18.8	7.5	9.4	
7-1/2	5.50	20.0	25.0	10.0	12.5	
10	7.50	30.0	37.5	15.0	18.8	
15	11.0	40.0	50.0	20.0	25.0	
20	15.0	60.0	75.0	25.0	31.0	
25	18.5	75.0	94.0	30.0	37.5	
30	22.4	100.0	125.0	40.0	50.0	
40	29.8	100.0	125.0	50.0	62.5	
50	37.3	150.0	188.0	60.0	75.0	
60	44.7	175.0	220.0	75.0	94.0	
75	55.9	250.0	313.0	100.0	125.0	
100	74.6	300.0	375.0	150.0	186.0	
125	93.2	375.0	469.0	175.0	219.0	
150	111.9	450.0	563.0	200.0	250.0	
175	130.5	525.0	656.0	250.0	313.0	
200	149.2	600.0	750.0	275.0	344.0	
					Tabl	

Engine-Drive Generator Size Requirements Submersible Motors Single Phase or Three Phase

Add 50% to generator rating for proper sizing of a 2-Wire submersible motor.

General generator sizing guidelines: Do not exceed

490 feet above sea level, 60% relative humidity and 86 °F maximum inlet air temperature. If these limits are exceeded, the standard diesel engine and possibly the generator will need to be derated in order to give the motor sufficient power supply. When ordering a generator set, altitude, air inlet temperature and maximum humidity should be given to the generator manufacturer for proper sizing. Generator sets for Three-Phase submersible motors must be able to withstand 35% voltage reduction during start-up.

For the selection of an internally regulated generator when applied to DOL start single phase or three phase motors, refer to the kW rating in **Table 3**.

ALWAYS:

- Always make sure the fuel filter is clean and the fuel is good so the generator runs smooth.
- Always start the generator before starting the motor.
- Always stop the motor, before stopping the generator.
- Always run the generator at full RPM while motor is in operation. Consult with the generator manufacturer for proper sizing and selection of generators.
- Always make sure to use a properly sized pump panel with built in pump protection

NEVER:

- Never allow the generator to run out of fuel.
- Never run other items off one or two legs of the power going to the pump as this may cause three phase unbalance of the power

WARNING: If the generator is to be used as standby or back-up to the power grid, an automatic or manual transfer switch must be used. Contact the utility company for proper use and approval.

Check Valves

Grundfos submersible pumps are equipped with a reliable check valve in the pump discharge, which prevents back flow when the pump stops. The short closing time of the check valve helps to reduce the risk of destructive water hammer.

Check valves built into SP pumps are intended for vertical pump applications. When installing a pump at an angle, installation requires an additional check valve to be installed in the discharge piping. This prevents misalignment or failure to seat the pump's check valve at an angle. Additional check valves for discharge piping are sold separately.

When installing a pump without a built-in check valve, an in-line check valve should be installed in the discharge pipe 25 feet from the pump. For deeper settings, check valves should be installed per 200 feet of discharge pipe.

Swing check valves are not recommended in submersible pump applications. Swing check valves have a tendency to close slowly, resulting in a back flow of fluid. Back flow can cause the motor to rotate backwards, which can damage the motor. Additionally, there is an opportunity for air to be introduced into the drop pipe which will create the potential for water hammer at startup.

Upthrust:

In the case of very low counter pressure at start-up, there is risk that the entire pump chamber stack and motor shaft may rise. This is called upthrust. Upthrust can damage both the pump and motor. Grundfos pumps and motors are protected against upthrust occurring during the critical start-up phase. The protection consists of either a built-in stop ring, or hydraulic balancing. This protection handles first time pipe fill in new applications. Repeated upthrust conditions will challenge the life of a pump and motor in applications where there is no check valve, a leaking check valve, or a drilled check valve where the pipe drains every cycle.

Cavitation:

Cavitation occurs when water is pulled apart, causing a void or a gap in the pipe. This void is under vacuum. When the pump comes on and water replaces the void under vacuum, the two water surfaces collide making a loud noise and causing vibration. There are many conditions that can cause cavitation.

Water Hammer occurs when:

- Closing a faucet or valve quickly, causing a pressure shock wave back thru the line that collides in a closed system.
- Not enough check valves in the water supply piping.
- The first check valve above the pump is 30 feet above the standing water level (lowest static level), or one of the lower check valves is leaking and an upper check valve holds. In these cases, the forces can pull the water apart and create a void (vacuum bubble) in the water.

Since water hammer often occurs when the pump starts up or shuts off, an end user might assume that the pump is the cause of the problem. However, there is usually some condition in the piping check valve or system that is the root cause of water hammer.

To prevent Water Hammer:

- Adding a check valve in the vertical piping from the pump.
- Removing any air from the pipes that vibrate.
- Improving piping mounting by adding dampeners between the pipe and the surface it is mounted to.
- Velocities within the pipeline should be maintained within accepted design ranges of 3 fps on horizontal runs and 5 fps on vertical runs.
- Valve closure should not be instantaneous. The larger the piping and or greater the fluid velocity the slower the valve closure should be.
- Vacuum breaks should be placed at all locations where the momentum of the fluid is likely to continue pulling a vacuum when fluid is stopped abruptly.
- Use a VFD or Soft Start with a 1 second ramp up to maximum frequency.
- Use a VFD that allows for a Line Fill for a certain time at a slower hz.

Submersible motors require cooling flow past the motor to operate within specified temperatures. Heat shortens motor life, so cooling is essential. Minimum flow past the motor is easily met when there is the appropriate amount of space between the motor and well casing, and flow into the well casing comes in from below the motor.

Submersible pumps and motors rely on carrying heat away from the motor by forced convection. The water pumped must flow past the motor on its way into the pump intake. See Table 4 below demonstrating cooling requirements for Grundfos Submersible motors.

Motor Cooling Requirements: Maximum Water Temperature - Minimum Velocity/Flow Past the Motor

Motor	Min. Well Casing	Minimum	Minimum	Maximum Tempe	rature of Pumped Liquid
Туре	or Sleeve Diameter	Velocity	Flow	Vertical Installation	Horizontal Installation
туре	Inches (mm)	FT/S (m/s)	GPM (m³/h)	°F (°C)	°F (°C)
MS402 / MS4000	4 (102)	0.00 (0.00)	0.0 (0.0)	86 (30)	Flow Sleeve Recommend
MS402 / MS4000	4 (102)	0.25 (0.08)	1.2 (.27)	104 (40)	104 (40)
MS6000C (T40) (Standard)	6 (152)	0.50 (0.15)	9 (2)	104 (40)	104 (40)
MS6000C (T60) (High Temp)	6 (152)	3.30 (1.00)	30 (6.8)	140 (60)	140 (60)
MMS6	6 (152)	0.15 (0.05)	13 (3)	68 (20)	68 (20)
MMS8000	8 (203)	0.50 (0.15)	25 (5.7)	86 (30)	86 (30)
MMS10000 (175, 200HP)	10 (254)	0.50 (0.15)	55 (12.5)	86 (30)	86 (30)
MMS10000 (250HP)	10 (254)	0.50 (0.15)	41 (9.3)	68 (20)	68 (20)
FT/S = Feet Per Second					Table 4

Submersible motors generate heat that must be dissipated as to not to damage or shorten the life of a motor. There are many factors that contribute to keeping the motor cool within motor specifications:

- 1. The temperature of the water being pumped.
- 2. The velocity/flow of water past the motor.
- 3. Proper phase balance.
- 4. Proper sizing of liquid end and motor.
- 5. Proper ramp up and ramp down speeds on VFDs and Soft Starts.
- 6. Prevention of scale build up on motor.

Excessive ambient water temperature and/or phase unbalanced, reduced velocity/flow rate past the motor requires derating of the load capability of the motor. Derating the load reduces the temperature rise of the motor windings within the limits set by the heat dissipation capacity of the cooling water. For questions on derating motors, please contact Grundfos.

Cooling Techniques:

1. A flow sleeve is required when a submersible motor is in a larger diameter well, an open hole cavern, or a large body of water such as a supply tank, cistern, or pond, where the cooling requirements in the chart above cannot be met. The flow sleeve induces water movement past the motor, increasing cooling.

2. When water enters the well from above the pump or next to the pump inlet, it is drawn down past the pump into the pump intake without flowing past the motor. This lack of cooling water flow will cause the motor to heat up. Solutions include raising the pump and motor to a position above the well intake. This allows the water to flow past the motor, creating the required cooling flow velocity. Installing a sleeve around the pump and motor will also force the water drawn down to come into the bottom of the sleeve and flow past the motor.

Flow Sleeve

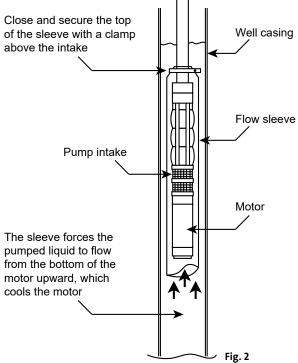
In some installations, it is necessary to use a Flow Sleeve to insure that water passes by the motor and properly cooling the motor. In some cases, the Flow Sleeve is used to increase velocity in order to prevent the formation of deposits.

The use of a sleeve should be considered under the following operating scenarios:

1. Top-feeding (cascading) wells: If a well is not cased below the motor, or casing is perforated above the motor, water can be fed directly into the pump without flowing past the motor.

2.Inadequate flow: This can occur if the motor is in a large body of water, if the well casing is much larger than the motor, or if delivery is very low in sump/wet pit tank applications.

3.Corrosion prone wells: If groundwater is aggressive or contains chloride, the corrosion rate will double for every 15°C (56F) increase in temperature between the metallic motor housing and the water. The motor housing is generally 5-15°C (41-56F) warmer than the produced water. A cooling sleeve will therefore reduce the risk of motor corrosion by keeping the exterior motor surface temperature lower during operation.


4.Presence of Iron, Manganese, or Calcium: If the well water contains a significant amount of iron (iron bacteria), manganese, or calcium, these substances will be oxidized and deposited on the motor surface. In the case of low flow past the motor, incrustation build-up forms a heat insulating layer of oxidized minerals, which may result in hot spots in the motor winding insulation. This temperature increase may shorten the life of the motor.

Typical Flow Sleeve Cutaway View:

In addition to factory-made, ready-to-use flow sleeves, it is also possible to make flow sleeves from PVC pipe and stainless steel hose clamps. Both options are effective in cooling a submersible motor when sized properly.

Use the motor cooling requirements in **Table 4** to help size the motor sleeve. Make sure size of Flow Sleeve fits in the well. The motor sleeve is generally of the next nominal diameter of standard pipe larger than the motor or the pump, depending on the sleeve configuration

used. The tubular/pipe material can be plastic or thin walled stainless steel (corrosion resistant materials preferred). The cap/top must accommodate the power cable without damage and provide a snug fit, so that only a very small amount of water can be pulled through the top of the sleeve. The fit should not be completely water tight as ventilation is often required to allow escape of any air or gas that might accumulate. The sleeve body should be stabilized by selftapping stainless steel screws installed through the side wall of the Flow Sleeve to prevent rotation and keep the motor centered within the sleeve. The sleeve should extend to a length of 1-2 times the sleeve diameter beyond the bottom of the motor when possible. Sleeves are typically attached immediately above the pump intake or at the pump/ column connection. Avoid setting bottom of Flow Sleeve near bottom of well.

Table 5 shows the Head Loss from Flow past the motor. Various Motor OD and casing/sleeve combinations will affect the head loss in a water system and should be considered in applications where the pump/motor is marginally submerged and reduced suction conditions exist. Note: This value should be included in a system TDH (Total Dynamic Head) calculation.

Motor	Dia. (nominal)	4"	4"	4"	6"	6"	6"	8"	8"
Casing I	.D. Inches (mm)	4.0 (102)	5 (127)	6 (152)	6 (152)	7 (178)	8 (203)	8.1 (206)	10 (254)
	25	0.3	-	-	-	-	-	-	-
	50	1.2	-	-	-	-	-	-	-
	100	4.7	0.3	-	1.7	-	-	-	-
	150	10.2	0.6	0.2	3.7	-	-	-	-
	200	-	1.1	0.4	6.3	0.5	-	6.8	-
GPM	250	-	1.8	0.7	9.6	0.8	-	10.4	-
GР	300	-	2.5	1.0	13.6	1.2	0.2	14.6	-
	400	-	-	-	23.7	2.0	0.4	24.6	-
	500	-	-	-	-	3.1	0.7	37.3	0.6
	600	-	-	-	-	4.4	1.0	52.2	0.8
	800	-	-	-	-	-	-	-	1.5
	1000	-	-	-	-	-	-	-	2.4
									Table 5

Annular Space Head Loss (Hf) from Flow Past Motor (ft. of wate
--

Note: The tabulated friction loss values assume maximum motor length for the specified nominal motor size and a smooth casing/sleeve ID and include entry and exit losses.

Fluid Velocity

1) A fluid velocity of 3 fps is generally considered optimum.

2) 0.25 fps is the minimum cooling velocity value.

3) The actual fluid velocity past the motor can be calculated using the formula:

Velocity (past motor) = gpm/2.45 (ID casing)² - (OD motor)²

Note: Casing or shroud ID and motor OD values are in inches, and velocity past the motor is in fps. **Table 5** shows the minimum flow rates, in gpm, for various well diameters and motor sizes.

Casing/Sleeve Inside Diameter	4" Motor (0.25 fps)	6" Motor (0.5 fps)	8" Motor (0.5 fps)	10" Motor (0.5 fps)
(Inches)		GF	PM	
4	1.2	-	-	-
5	7	-	-	-
6	13	9	-	-
7	20	25	-	-
8	30	45	10	-
10	50	90	55	-
12	80	140	110	78
14	110	200	170	140
16	150	280	245	213
18	-	380	335	300

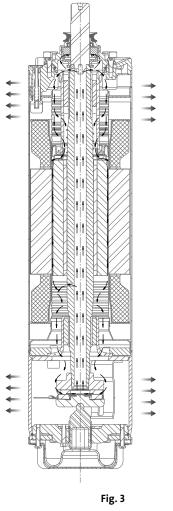
Table 6

Submersible Motor Cooling - Derating Water Temperature

FKM elastomer's (rubber compounds) are recommended any time the normal ambient fluid temperature exceeds 104°F. Allowable % Max. Namplate Amps Derated for Ambient Water Temperature at 0.50 fps

Water Temp.	0 - 3 HP	5 - 15 HP	20 - 40 HP
86°F (30°C)	100%	100%	100%
95°F (35°C)	100%	100%	90%
104°F (40°C)	100%	90%	80%
113°F (45°C)	90%	80%	70%
122°F (50°C)	80%	70%	60%
130°F (55°C)	70%	60%	45%
140°F (60°C)	50%	-	-
			Table 7

Note: Derating % is based on an ambient fluid temperature of 30°C (86°F) @ 0.5 fps, consult motor manufacture for specific maximum full-load cooling water temperature without derating. Typical base ambient fluid temperature rating for various manufactures of submersible motors used in the water supply industry range from 77°F (25°C) to 104°F (40°C), with 86°F (30°C) being the most prominent.


Example of Submersible Motor Cooling:

MS 6000C Motor cooling

The motor has cooling chambers at the top and bottom. An efficient internal circulation system help transport the heat from the rotor and bearings via the motor liquid to the outer surface of the motor.

Heat generated in the motor is carried away to the surrounding pumped liquid via the outer surface of the motor.

This is the reason why the temperature of the pumped liquid and its flow velocity past the motor are of vital importance to the life of the motor.

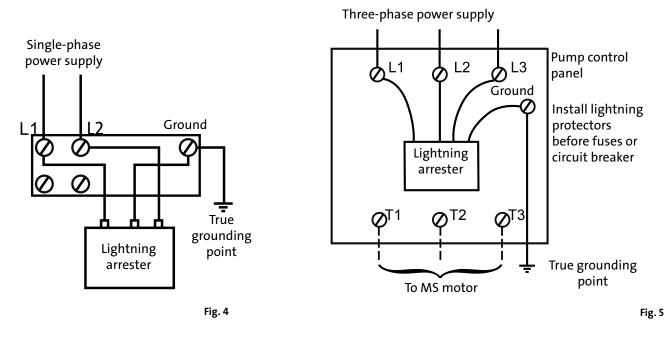
WARNING!

SERIOUS ELECTRICAL SHOCK CAN OCCUR IF ITEMS ARE NOT GROUNDED PROPERLY TO MEET CODE.

Grounding Control Box and Panel

Reduced risk of electric shock during operation of a pump and motor requires an acceptable ground. Be sure that motor conduit is grounded. The pump is grounded to the service entrance by connecting a copper conductor (at least the size of the circuit supplying the pump) to the grounding screw provided within the wiring compartment.

The National Electrical Code requires that when using a control box, panel or a pressure switch, all grounding terminals are always to be connected to the supply ground. If the circuit has no grounding conductor and no metal conduit from the box to the supply panel, use a wire at least as large as the line conductors and **connect as required by national, state, and local codes** from the grounding terminal to the electrical supply ground.


The control box or control panel must be permanently grounded in accordance with national, state, and local codes.

Always see product Installation and Operations manuals for warnings and proper installation. **Note:** The metal well head and metal casing must be grounded.

Grounding Surge Arresters

To perform correctly, above ground surge arresters are required to be grounded from metal to metal, all the way to the lowest draw down water level. Less than truly grounded will allow power surges to cause damage. **See Fig. 5**.

GROUNDING THE ARRESTER TO THE SUPPLY GROUND OR TO A DRIVEN GROUND ROD PROVIDES LITTLE OR NO SURGE PROTECTION FOR THE MOTOR.

Equipment and System Grounding

The submersible water system must be grounded from the motor to the service entrance ground, connecting every component in the system in accordance with national, state, and local codes.

Note: Always ground all equipment in accordance with national, state and local codes for where the job is located. If a Surge arrestor is required on a VFD application, it should be installed on the incoming line side of the VFD.

3-Wire Control Boxes

Submersible, single phase, 3-wire motors require the use of a control box. The control box uses capacitors, relays, and in some cases contactors to start and control the submersible 3 wire motor.

CAUTION: The control box and 3-wire motor must match in HP and voltage to operate properly and prevent damage to equipment.

Potential (voltage) Relay

Capacitor start motors need an electrical device to disconnect the start capacitor after the motor starts. This is accomplished thru the use of a potential relay. The potential relay has a normally closed contact. When power is applied, it is sent to both the start winding and run winding simultaneously. As the motor speed increases, the voltage across the relay coil increases until it reaches a pre-determined value. When this coil voltage is reached the contact opens and disconnects the start winding. The motor continues to run on the main winding only. The contact remains open while the motor is running, and resets to the closed position when power is turned off to the motor.

SA-SPM 6 control boxes are used as starting units for single-phase, 3-wire motors ranging from:

- Standard Control Box 0.5 hp to 5 hp (.37 kW to 3.7 kW)
- Standard Control Box and Deluxe Control Box from 1.5 hp to 5 hp (1.1 kW to 3.7 kW)

The Standard Control Box incorporates a motor protective circuit breaker to protect the motor against overload.

The Deluxe Control Box is similar to the Standard Control Box with the addition of a motor contactor.

Control Box Technical Data:

Enclosure class: IP42/NEMA 3R Ambient Temperature: -4 °F to +140 °F (-20 °C to +60 °C) Relative humidity: Maximum 95%

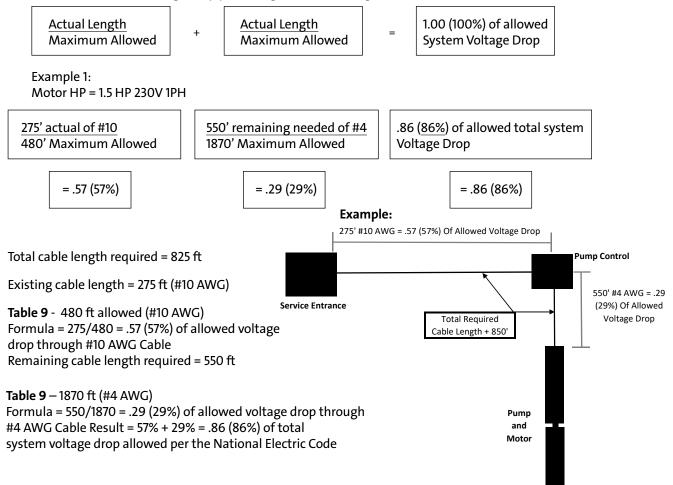
Туре	HP	Volts	Material Number	Material Number For Reference
Standard	1/2	115	98821580	98315240
Standard	1/2	230	98821631	98315251
Standard	3/4	230	98821632	98315252
Standard	1	230	98821633	98315253
Standard	1-1/2	230	98315254	-
Standard			98315256	-
Standard	3	230	98315258	-
Standard	5	230	98315260	-
Deluxe	1-1/2	230	98315255	-
Deluxe	2	230	98315257	-
Deluxe	3	230	99053534*	98315259
Deluxe	5	230	99053535*	98315261
Deluxe	7-1/2	230	99053536*	-
Deluxe	10	230	99053537*	-
Deluxe	15	230	99053538*	-
* New part nu	umbers co	oming in	2018.	Table 8

SA-SPM6 Single Phase 60Hz Control Boxes For 3-Wire 4" Motors

* New part numbers with industry standard larger metal enclosure.

SA - SPM6

Operation of MS402 2-wire motor


2-wire submersibe motors do not require a control box for starting. The start up operation of the Grundfos MS402 motor uses both an electronic start circuit and a thermal overload switch in series. When power is applied to the motor it passes through the thermal overload switch and into the start circuit. The electronic start circuit energizes the start winding and the run winding simultaneously to provide the torque required to get the rotor turning. After approximately ½ second, the start winding is disengaged and only the run winding is powered. This one-time start event does not reset until the power is disconnected. It is the role of the thermal overload switch to protect the motor windings against high current. If the motor does not start to rotate before the start winding is disengaged the thermal overload will open after a few seconds to protect the motor. After approximately 20 seconds, the thermal overload switch cools and closes reapplying power to the start circuit and starting the whole process over again.

SINGLE PHASE MOTORS

TWO OR MORE DIFFERENT CABLE SIZES CAN BE USED

Some applications may require the use of different cable sizes to complete the installation.

Examples include occasions when upgrading or replacing existing pump/motor systems where cable is buried and it is not possible to replace. In this case, using the following formula will offer the installer an option of using a different size cable to meet the National Electric Code voltage drop requirement of 1.00. The formula shows that all of the allowed cable voltage drop percentages (%) added together must be less than 1.00 (100%)

Motor	Rating						AWG co	opper wire	e size d	ft (m)					Μ	CM Copp	er Wire 9	Size ft (m)
Volts	HP	14	12	10	8	6	4	3	2	1	0	00	000	0000	250	300	350	400	500
115	1/2	100 (30)	160 (49)	250 (76)	390 (119)	620 (189)	960 (293)	1190 (363)	1460 (445)	1780 (543)	2160 (658)	2630 (802)	3140 (957)	3770 (1149)	4240 (1292)	4770 (1454)	5320 (1622)	5750 (1753)	6590 (2009)
	1/2	400 (122)	650 (198)	1020 (311)	1610 (491)	2510 (765)	3880 (1183)	4810 (1466)	5880 (1792)	7170 (2185)	8720 (2658)	10620 (3237)	12660 (3859)	15210 (4636)	17100 (5212)	19260 (5871)	21440 (6535)	23200 (7071)	26600 (8108)
	3/4	300 (91)	480 (146)	760 (232)	1200 (366)	1870 (570)	2890 (881)	3580 (1091)	4370 (1332)	5330 (1625)	6470 (1972)	7870 (2399)	9380 (2859)	11250 (3429)	12640 (3853)	14220 (4334)	15810 (4819)	17090 (5209)	19570 (5965)
	1	250 (76)	400 (122)	630 (192)	990 (302)	1540 (469)	2380 (725)	2960 (902)	3610 (1100)	4410 (1344)	5360 (1634)	6520 (1987)	7780 (2371)	9350 (2850)	10510 (3204)	11840 (3609)	13180 (4017)	14260 (4347)	16350 (4984)
	1-1/2	190 (58)	310 (94)	480 (146)	770 (235)	1200 (366)	1870 (570)	2320 (707)	2850 (869)	3500 (1067)	4280 (1305)	5240 (1597)	6300 (1920)	7620 (2323)	8630 (2630)	9810 (2990)	10980 (3347)	11960 (3645)	13860 (4225)
230	2	150 (46)	250 (76)	390 (119)	620 (189)	970 (296)	1530 (466)	1910 (582)	2360 (719)	2930 (893)	3620 (1103)	4480 (1366)	5470 (1667)	6700 (2042)	770 (235)	8890 (2710)	10080 (3072)	11130 (3392)	13170 (4014)
200	3	120* (37)	190 (58)	300 (91)	470 (143)	750 (229)	1190 (363)	1490 (454)	1850 (564)	2320 (707)	2890 (881)	3610 (1100)	4470 (1362)	5550 (1692)	6450 (1966)	7580 (2310)	8690 (2649)	9740 (2969)	11770 (3588)
	5	-	110* (34*)	180 (55)	280 (85)	450 (137)	710 (216)	890 (271)	1110 (338)	1390 (424)	1740 (530)	2170 (661)	2680 (817)	3330 (1015)	3870 (1180)	4550 (1387)	5210 (1588)	5840 (1780)	7060 (2152)
	7-1/2	-	-	120* (37*)	200 (61)	310 (94)	490 (149)	610 (186)	750 (229)	930 (283)	1140 (347)	1410 (430)	1720 (524)	2100 (640)	2400 (732)	2790 (850)	3120 (951)	3430 (1046)	4040 (1231)
	10	-	-	-	160* (49*)	250 (76)	390 (119)	490 (149)	600 (183)	750 (229)	930 (283)	1160 (354)	1430 (436)	1760 (536)	2030 (619)	2370 (722)	2700 (823)	3000 (914)	3590 (1094)
	15	-	-	-	-	170* (52*)	270 (82)	340 (104)	430 (131)	530 (162)	660 (201)	820 (250)	1020 (311)	1260 (384)	1460 (445)	1700 (518)	1940 (591)	2170 (661)	2610 (796)

Note: (for all cable selection tables)

Table 9

Bold and * Indicates conductor only. (Not jacketed)

No * indicates both jacketed cable and single conductor cables.

1. Table based on copper wire. If aluminum wire is used, multiply lengths by 0.5. Maximum allowable length of aluminum is considerably shorter than copper wire of same size. Seek Aluminum wire industry for cable selection table.

2. The portion of the total cable which is between the service entrance and a motor starter/controller should not exceed 25% of the total maximum length to assure reliable starter operation. Single-phase control boxes may be connected at any point of the total cable length.

3. Table based on a maintaining motor terminal voltage at 95% of service entrance voltage, running at maximum nameplate amperes. In general, voltage drop should be maintained at 3V/100 ft. or less.

4. One foot = .305 meter (1 meter = 3.28 feet)

4" 2-Wire Single Phase Motors - Control Box Not Required

Motor	HP	Kw	Volts	Service		Full L	oad		Serv	vice Factor	(Max. Lo	ad)	Locked Rotor	KVA	Line-to-Line Res	istance (Ohm)	Max.	RPM
Туре	nr	κν	VOILS	Factor	Amps	Watts*	Power Fact.	Eff. %	Amps	Watts*	Power Fact.	Eff. %	Amps**	Code	Black-Yellow	Red-Yellow	Thrust	
	1/2	0.37	115	1.60	9.5	675	0.67	55.0	12.0	1076	0.78	62	82.8	R	1.1 -	1.3		
	1/2	0.37		1.60	4.5	646	0.63	57.7	6.0	1049	0.76	62	37.2	R	4.0 -	4.8		
MS402	3/4	0.55	230	1.50	6.9	994	0.63	56.3	8.4	1449	0.75	62	51.2	Ν	3.2 -	3.8	900	3450
	1	0.75	250	1.40	8.8	1260	0.67	59.7	9.8	1848	0.82	63	55.9	М	2.5 -	3.1		
	1 1/2	1.10		1.30	11.6	1760	0.70	62.7	13.1	2561	0.85	64	81.2	L	1.7 -	2.1		

4" 3-Wire Single Phase Motors - Control Box Required

Motor	HP	Kw	Volts	Service		Full Lo	ad*		Serv	vice Factor	(Max. Lo	ad)	Locked Rotor	KVA	Line-to-Line Res	sistance (Ohm)	Max.	RPM
Туре	nr	ĸw	VOILS	Factor	Amps	Watts**	Power Fact.	Eff. %	Amps	Watts**	Power Fact.	Eff. %	Amps***	Code	Black-Yellow	Red-Yellow	Thrust	
	1/2	0.37	115	1.60	10.0	992	0.74	37.6	12.0	1049	0.73	61	44.4	L	0.9 - 1.1	1.9 - 2.4		
	1/2	0.37		1.60	5.6	968	0.75	38.2	6.0	1049	0.76	62	24.6	L	4.0 - 4.9	15.8 - 19.6		
MS402	3/4	0.55	230	1.50	8.4	1410	0.76	39.7	8.4	1449	0.75	62	34.4	L	3.2 - 3.9	14 - 17.2	900	3450
	1	0.75	230	1.40	9.0	1662	0.81	44.9	9.8	1848	0.82	63	42.1	K	2.6 - 3.1	10.3 - 12.5		
	1 1/2	1.10		1.30	10.7	2169	0.89	51.6	11.6	2375	0.89	69	58.0	Н	1.9 - 2.3	7.8 - 9.6		
	2	1.50		1.25	13.1	2582	0.86	57.8	13.2	2611	0.86	72	55.4	G	1.5 - 1.8	3.4 - 4.1		
MS4000	3	2.20	230	1.15	16.8	3601	0.93	62.1	17.0	3636	0.93	74	103.7	F	1.2 - 1.4	2.5 - 3.0	1500	3450
	5	3.70		1.15	25.7	5645	0.96	66.0	27.5	5819	0.92	77	110.0	F	0.65 - 0.85	1.7 - 2.1		

*Calculated Value (Voltage x Current x Cos F)

**Calculated Value (Full Load current x Locked Rotor Current %)

4" 2-Wire Single Phase Motors - Control Box Not Required

				Fuses	/ Circuit Brea	akers
НР	kW	Volt	SF	(Ma	ximum Per NI	EC)
		voit	Amps	Standard	Time Delay	Circuit
				Fuse	Fuse	Breaker
1/2	0.37	115	12.0	35	20	30
1/2	0.37		6.0	20	10	15
3/4	0.55	230	8.4	25	15	20
1	0.75	250	9.8	30	20	25
1 1/2	1.10		11.6	35	20	30

4" 3-Wire Single Phase Motors - Control Box Required

				Fuses	/ Circuit Brea	akers
НР	kW	Volt	SF	(Ma	ximum Per NI	EC)
		, out	Amps	Standard	Time Delay	Circuit
				Fuse	Fuse	Breaker
1/2	0.37	115	12.0	35	20	30
1/2	0.37		6.0	20	10	15
3/4	0.55		8.4	25	15	20
1	0.75		9.8	30	20	25
1 1/2	1.10	230	11.6	35	20	30
2	1.50		13.2	35	20	30
3	2.20		17.0	50	30	45
5	3.70		27.5	80	45	75
						Table 11

Table 11

Table 10

Buck-Boost Transformers

A convenient and low cost method to adjust available power supply voltage is the utilization of a buck-boost transformer.

Common usage is to buck (lower) or boost (raise) the supply voltage, depending on application manufacturer, usually 5 to 27%. A common example would be to raise 208 supply voltage to 230 volts to match single-phase submersible motor and controls.

When selecting a buck-boost transformer you will need the following information: 1) Input line voltage, 2) Voltage required for the load, 3) kVA or Amperage rating of the load, 4) Frequency, 5) Number of phases, 6) Type of electrical connection; Delta or Wye.

Motor HP	1/2	3/4	1	1-1/2	2	3	5	7-1/2	10	15
Load kVA	1.36	1.84	2.21	2.65	3.04	3.91	6.33	9.66	11.70	16.60
Minimum XFMR kVA	0.14	0.19	0.22	0.27	0.31	0.40	0.64	0.97	1.20	1.70
Standard XFMR kVA	0.25	0.25	0.25	0.50	0.50	0.50	0.75	1.00	1.50	2.00

Table 12

Motor	Rating					A١	NG copp	er wire s	ize ft (r	m)					Μ	СМ Сорр	er Wire	Size ft (m)
Volts	HP	14	12	10	8	6	4	3	2	1	0	00	000	0000	250	300	350	400	500
	1/2	710 (216)	1140 (347)	1800 (549)	2840 (866)	4420 (1347)	-	1	-	1	-	-	-	-	-		-	-	-
	3/4	510 (155)	810 (245)	1280 (390)	2030 (619)	3160 (963)	-	1	-	1	-	-	-	-	-		-	-	-
	1	430 (131)	690 (210)	1080 (329)	1710 (521)	2670 (814)	4140 (1262)	5140 (1567)	-	-	-	-	-	-	-	-	-	-	-
	1-1/2	310 (94)	500 (152)	790 (241)	1260 (384)	1960 (597)	3050 (930)	3780 (1152)	-	-	-	-	-	-	-	-	-	-	-
	2	240 (73)	390 (119)	610 (186)	970 (296)	1520 (463)	2360 (719)	2940 (896)	3610 (1100)	4430 (1350)	5420 (1652)	-	-	-	-	-	-	-	-
	3	180 (55)	290 (88)	470 (143)	740 (226)	1160 (354)	1810 (552)	2250 (686)	2760 (841)	3390 (1033)	4130 (1259)	-	-	-	-	-	-	-	-
200-208	5	110* (34*)	170 (52)	280 (85)	440 (134)	690 (210)	1080 (329)	1350 (411)	1660 (506)	2040 (622)	2490 (759)	3050 (930)	3670 (1119)	4440 (1353)	5030 (1533)	-	-	-	-
	7-1/2	-	-	200 (61)	310 (94)	490 (149)	770 (235)	960 (293)	1180 (360)	1450 (442)	1770 (539)	2170 (661)	2600 (792)	3150 (960)	3560 (1085)	-	-	-	-
	10	-	-	-	230* (70*)	370 (113)	570 (174)	720 (219)	880 (268)	1090 (332)	1330 (405)	1640 (500)	1970 (600)	2390 (728)	2720 (829)	3100 (945)	3480 (1061)	3800 (1158)	4420 (1347)
	15	-	-	-	160* (49*)	250* (76*)	390 (119)	490 (149)	600 (183)	740 (226)	910 (277)	1110 (338)	1340 (408)	1630 (497)	1850 (564)	2100 (640)	2350 (716)	2570 (783)	2980 (908)
	20	-	-	-	-	190* (58*)	300* (91*)	380 (116)	460 (140)	570 (174)	700 (213)	860 (262)	1050 (320)	1270 (387)	1440 (439)	1650 (503)	1850 (564)	2020 (616)	2360 (719)
	25	-	-	-	-	-	240* (73*)	300* (91*)	370* (113*)	460 (140)	570 (174)	700 (213)	840 (256)	1030 (314)	1170 (357)	1330 (405)	1500 (457)	1640 (500)	1900 (579)
	30	-	-	-	-	-	-	250* (76*)	310* (94*)	380* (116*)	470 (143)	580 (177)	700 (213)	850 (259)	970 (296)	1110 (338)	1250 (381)	1360 (415)	1590 (485)

Table 13

Note: (for all cable selection tables)

Bold and * Indicates conductor only. (Not jacketed)

No $\ensuremath{^*}$ indicates both jacketed cable and single conductor cables.

1. Table based on copper wire. If aluminum wire is used, multiply lengths by 0.5. Maximum allowable length of aluminum is considerably shorter than copper wire of same size. Seek Aluminum wire industry for cable selection table.

2. The portion of the total cable which is between the service entrance and a motor starter/controller should not exceed 25% of the total maximum length to assure reliable starter operation. Single-phase control boxes may be connected at any point of the total cable length.

3. Table based on a maintaining motor terminal voltage at 95% of service entrance voltage, running at maximum nameplate amperes. In general, voltage drop should be maintained at 3V/100 ft. or less.

4. One foot = .305 meter (1 meter = 3.28 feet)

Motor	Rating					A۱	NG copp	er wire s	ize ft (r	n)					М	СМ Сорр	er Wire	Size ft (m)
Volts	HP	14	12	10	8	6	4	3	2	1	0	00	000	0000	250	300	350	400	500
	1/2	930 (283)	1490 (454)	2350 (716)	3700 (1128)	5760 (1756)	8910 (2716)	-	-	-	-	-	-	-	-	-	-	-	-
	3/4	670 (204)	1080 (329)	1700 (518)	2580 (786)	4190 (1277)	6490 (1978)	8060 (2457)	9860 (3005)	-	-	-	-	-	-	-	-	-	-
	1	560 (171)	910 (277)	1430 (436)	2260 (689)	3520 (1073)	5460 (1664)	6780 (2067)	8290 (2527)	1	-	-	1	-	-	-	-	-	-
	1-1/2	420 (128)	670 (204)	1060 (323)	1670 (509)	2610 (796)	4050 (1234)	5030 (1533)	6160 (1878)	7530 (2295)	9170 (2795)	-	1	-	-	-	-	-	-
	2	320 (98)	510 (155)	810 (247)	1280 (390)	2010 (613)	3130 (954)	3890 (1186)	4770 (1454)	5860 (1786)	7170 (2185)	8780 (2676)	-	-	-	-	-	-	-
	3	240 (73)	390 (119)	620 (189)	990 (302)	1540 (469)	2400 (732)	2980 (908)	3660 (1116)	4480 (1366)	5470 (1667)	6690 (2039)	8020 (2444)	9680 (2950)	-	-	-	-	-
230	5	140* (43*)	230 (70)	370 (113)	590 (180)	920 (280)	1430 (436)	1790 (546)	2190 (668)	2690 (820)	3290 (1003)	4030 (1228)	4850 (1478)	5870 (1789)	6650 2027	7560 (2304)	8460 (2579)	9220 (2810)	-
	7-1/2	-	160* (49*)	260 (79)	420 (128)	650 (198)	1020 (311)	1270 (387)	1560 (475)	1920 (585)	2340 (713)	2870 (875)	3440 (1049)	4160 (1268)	4710 (1436)	5340 (1628)	5970 (1820)	6500 (1981)	7510 (2289)
	10	-	-	190* (58*)	310 (94)	490 (149)	760 (232)	950 (290)	1170 (357)	1440 (439)	1760 (536)	2160 (658)	2610 (796)	3160 (963)	3590 (1094)	4100 (1250)	4600 (1403)	5020 (1530)	5840 (1780)
	15	-	-	-	210* (64*)	330 (101)	520 (158)	650 (198)	800 (244)	980 (299)	1200 (366)	1470 (448)	1780 (543)	2150 (655)	2440 (744)	2780 (847)	3110 (948)	3400 (1036)	3940 (1201)
	20	-	-	-	-	250* (76*)	400 (122)	500 (152)	610 (186)	760 (232)	930 (283)	1140 (347)	1380 (421)	1680 (512)	1910 (582)	2180 (665)	2450 (747)	2680 (817)	3120 (951)
	25	-	-	-	-	-	320* (98*)	400 (122)	500 (152)	610 (186)	750 (229)	920 (280)	1120 (341)	1360 (415)	1540 (469)	1760 (537)	1980 (604)	2160 (658)	2520 (768)
	30	-	-	-	-	-	260* (79*)	330* (101*)	410* (125*)	510 (155)	620 (189)	760 (232)	930 (283)	1130 (344)	1280 (390	1470 (448)	1650 (503)	1800 (549)	2110 (643)

Note: (for all cable selection tables)

Bold and * Indicates conductor only. (Not jacketed)

No * indicates both jacketed cable and single conductor cables.

1. Table based on copper wire. If aluminum wire is used, multiply lengths by 0.5. Maximum allowable length of aluminum is considerably shorter than copper wire of same size.

2. The portion of the total cable which is between the service entrance and a motor starter/controller should not exceed 25% of the total maximum length to assure reliable starter operation. Single-phase control boxes may be connected at any point of the total cable length.

3. Table based on a maintaining motor terminal voltage at 95% of service entrance voltage, running at maximum nameplate amperes. In general, voltage drop should be maintained at 3V/100 ft. or less.

4. One foot = .305 meter (1 meter = 3.28 feet)

Table 14

	THREE PHASE MOTORS
POWER SUPPLY CABLE SELECTION	/ THREE-PHASE, 3-WIRE CABLE, 60 HZ

Motor	Rating					A۱	NG copp	er wire s	ize ft (ı	n)					M	CM Copp	oer Wire	Size ft ((m)
Volts	HP	14	12	10	8	6	4	3	2	1	0	00	000	0000	250	300	350	400	500
	1/2	3770 (1149)	6020 (1835)	9460 (2883)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	3/4	2730 (832)	4350 (1326)	6850 (2088)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1	2300 (701)	3670 (1119)	5770 (1759)	9070 (2765)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1-1/2	(701) 1700 (518)	2710 (826)	4270 (1301)	6730 (2051)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2	(310) 1300 (396)	2070 (631)	3270 (997)	5150 (1570)	8050 (2454)	-	-	-	-	-	_	-	-	-	-	-	-	-
	3	(390) 1000 (305)	(031) 1600 (488)	2520 (768)	3970 (1210)	6200 (1890)	-	-	-	-	-	-	-	-	-	-	-	-	-
	5	(303) 590 (180)	950 (290)	(708) 1500 (457)	2360 (719)	3700 (1128)	5750 (1753)	-	-	-	-	-	-	-	-	-	-	-	-
	7-1/2	(180) 420 (128)	(290) 680 (207)	(437) 1070 (326)	(719) 1690 (515)	2640 (805)	(1753) 4100 (1250)	5100 (1554)	6260 (1908)	7680 (2341)	-	-	-	-	-	-	-	-	-
	10	(128) 310 (94)	(207) 500 (152)	(326) 790 (241)	(515) 1250 (381)	(805) 1960 (597)	(1250) 3050 (930)	(1554) 3800 (1158)	(1908) 4680 (1426)	(2341) 5750 (1753)	7050 (2149)	-	-	-	-	-	-	-	-
	15	-	340* (104*)	(241) 540 (165)	(381) 850 (259)	(337) 1340 (408)	2090 (637)	2600 (792)	(1420) 3200 (975)	3930 (1198)	4810 (1466)	5900 (1798)	7110 (2167)	-	-	-	-	-	-
	20	-	-	410 (125)	650 (198)	(408) 1030 (314)	(037) 1610 (491)	2000 (610)	2470 753)	3040 (927)	3730 (1137)	4580 (1396)	5530 (1686)	-	-	-	-	-	-
460	25	-	-	330* (101*)	530 (162)	830 (253)	(491) 1300 (396)	(010) 1620 (494)	1990 (607)	(327) 2450 (747)	3010 (917)	3700 (1128)	(1080) 4470 (1362)	5430 (1655)	-	-	-	-	-
	30	-	-	(101) 270* (82*)	430 (131)	680 (207)	(350) 1070 (326)	(405)	(007) 1640 (500)	2030 (619)	2490 (759)	3060 (933)	3700 (1128)	4500 (1372)	5130 (1564)	5860 (1786)	-	-	-
	40	-	-	-	(131) 320* (98*)	500* (152*)	(320) 790 (241)	980 (299)	(300) 1210 (369)	(013) 1490 (454)	(753) 1830 (558)	(933) 2250 (686)	2710 (826)	3290 (1003)	3730 (1137)	4250 (1295)	-	-	-
	50	-	-	-	-	(132*) 410* (125*)	(241) 640 (195)	(299) 800 (244)	(309) 980 (299)	(434) 1210 (369)	(558) 1480 (451)	(686) 1810 (552)	(826) 2190 (668)	2650 (808)	3010 (918)	(1293) 3420 (1042)	3830 (1167)	4180 (1274)	4850 (1478)
	60	-	-	-	-	-	540* (165*)	670* (204*)	830 (253)	(303) 1020 (311)	(451) 1250 (381)	(552) 1540 (469)	(666) 1850 (564)	2240 (683)	2540 (774)	2890 (881)	3240 (988)	3540 (1079)	4100 (1250)
	75	-	-	-	-	-	440* (134*)	550* (168*)	680* (207*)	(311) 840 (256)	(301) 1030 (314)	(405) 1260 (384)	(504) 1520 (463)	(663) 1850 (564)	2100 (640)	2400 (732)	2700 (823)	2950 (899)	3440 (1049)
	100	-	-	-	-	-	-	-	500* (152*)	620* (189*)	760* (232*)	940 (287)	(403) 1130 (344)	(304) 1380 (421)	(040) 1560 (476)	(752) 1790 (546)	2010 (613)	2190 (668)	2550 (777)
	125	-	-	-	-	-	-	-	-	-	600* (183*)	740* (226*)	890* (271*)	(421) 1000 (305)	(470) 1220 (372)	(340) 1390 (424)	(015) 1560 (476)	(000) 1700 (518)	(777) 1960 (597)
	150	-	-	-	-	-	-	-	-	-	-	630* (192*)	760* (232*)	920* (280*)	(372) 1050 (320)	(424) 1190 363)	(470) 1340 (408)	(310) 1460 (445)	(537) 1690 (515)
	175	-	-	-	-	-	-	-	-	-	-	-	670* (204*)	810* (247*)	930* (284)	1060 (323)	(400) 1190 (363)	(1300 (396)	(515) 1510 (460)
	200	-	-	-	-	-	-	-	-	-	-	-	590* (180*)	710* (216*)	810* (247)	920* (280)	1030 (314)	(344)	1310 (399)
	250	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	760 (232)	865 (264)
		•		1	•				•					1				. ,	Table 15

23

Motor	Rating					A١	NG copp	er wire si	ize ft (ı	n)					М	СМ Сорр	oer Wire	Size ft (m)
Volts	HP	14	12	10	8	6	4	3	2	1	0	00	000	0000	250	300	350	400	500
	1/2	5900 (1798)	9410 (2868)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	3/4	4270 (1301)	6810 (2076)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1	3630 (1106)	5800 (1768)	9120 (2780)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1-1/2	2620 (799)	4180 (1274)	6580 2006)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2	2030 (619)	3250 (991)	5110 (1558)	8060 (2457)	-	-	-	-	-		-	-	-	-	-	-	-	-
	3	1580 (482)	2530 (771)	3980 (1213)	6270 (1911)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	5	920 (280)	1480 (451)	2330 (710)	3680 (1122)	5750 (1753)	-	-	-	-	-	-	-	-	-	-	-	-	-
	7-1/2	660 (201)	1060 (323)	(710) 1680 (512)	2650 (808)	4150 (1265)	-	-	-	-	-	-	-	-	-	-	-	-	-
	10	490 (149)	780 (238)	(312) 1240 (378)	(594)	3060 (933)	4770 (1454)	5940 (1811)	-	-	-	-	-	-	-	-	-	-	-
	15	330* (101*)	530 (162)	850 (259)	(334) 1340 (408)	2090 (637)	3260 (994)	4060 (1237)	-	-	-	-	-	-	-	-	-	-	-
	20	-	410* (125*)	650 (198)	(408) 1030 (314)	(037) 1610 (491)	(554) 2520 (768)	3140 (957)	3860 (1177)	4760 (1451)	5830 (1777)	-	-	-	-	-	-	-	-
575	25	-	-	(198) 520 (158)	(314) 830 (253)	(491) 1300 (396)	2030 (619)	2530 (771)	3110 (948)	(1431) 3840 (1170)	4710 (1436)	-	-	-	-	-	-	-	-
	30	-	-	430* (131*)	680	1070	1670	2080	(348) 2560 (780)	3160	3880	4770	5780	7030	8000 (2438)	-	-	-	-
	40	-	-	-	(207) 500* (152*)	(326) 790 (241)	(509) 1240 (378)	(634) 1540 (469)	(780) 1900 (579)	(963) 2330 (710)	(1183) 2860 (872)	(1454) 3510 (1070)	(1762) 4230 (1289)	(2143) 5140 (1567)	(2438) 5830 (1777)	-	-	-	-
	50	-	-	-	410*	(241) 640* (195*)	1000	(409) 1250 (381)	1540	(710) 1890 (576)	(872) 2310 (704)	2840	3420	4140	4700	5340	5990	6530	7580
	60	-	-	-	(125*) -	540*	(305) 850	1060	(469) 1300	1600	1960	(866) 2400 (722)	(1042) 2890	(1262) 3500	(1433) 3970	(1628) 4520	(1826) 5070	(1990) 5530	(2310) 6410
	75	-	-	-	-	(165*) -	(259) 690*	(323) 860	(396) 1060 (222)	(488) 1310 (200)	(597) 1600	(732) 1970	(881) 2380 (725)	(1067) 2890	(1210) 3290 (1002)	(1378) 3750	(1545) 4220 (1286)	(1686) 4610	(1954) 5370 (1627)
	100	-	-	-	-	-	(210*) -	(262) 640*	(323) 790*	(399) 970 (206)	(488) 1190 (262)	(600) 1460	(725) 1770 (520)	(881) 2150	(1003) 2440 (744)	(1143) 2790	(1286) 3140	(1405) 3430	(1637) 3990 (1216)
	125	-	_	-	-	-	-	(195*) -	(241*) 630* (102*)	(296) 770*	(363) 950 (200)	(445) 1160 (25.4)	(539) 1400	(655) 1690	(744) 1920	(850) 2180	(957) 2440 (744)	(1046) 2650 (808)	(1216) 3070 (026)
	150	_	-	-	-	-	-	-	(192*)	(235*) 660* (202*)	(290) 800*	(354) 990*	(427) 1190	(515) 1440 (420)	(585) 1630	(665) 1860	(744) 2080	(808) 2270 (602)	(936) 2640 (805)
	175	-	-	-	-	-	-	-	-	(202*) -	(244*) 700* (214*)	(302*) 870* (265*)	(363) 1050* (220*)	(439) 1270 (287)	(497) 1450 (442)	(567) 1650 (502)	(634) 1860	(692) 2030 (610)	(805) 2360 (710)
	200	-	-	-	-	-	-	-	-	-	(214*) -	(265*) 760*	(320*) 920*	(387) 1110*	(442) 1260	(503) 1440	(567) 1620	(619) 1760	(719) 2050
												(232*)	(280*)	(338*)	(384)	(439)	(494)	(537)	(625) Table 16

Motor	НР	Kw	Volts	Service		Full	Load		Servi	ce Factor	· (Max. L	oad)	Locked Rotor	KVA	Line-to-Line Min. /	e Resistance	Max.	RPM
Туре	nr	KW	VOILS	Factor	Amps	Watts*	Power Fact.	Eff. %	Amps	Watts*	Power Fact.	Eff. %	Amps**	Code	(Ω O		Thrust	KF IVI
			208		3.3	623	0.53	59.4	3.5	908			16.1		5.9	7.3		
	1/2	0.37	230	1.60	3.0	625	0.53	59.2	3.2	904	0.72	67	14.5	N	7.3	8.9	900	3450
	-/-	0.07	460	1.00	1.5	625	0.53	59.2	1.6	918	0172	0,	7.4		28.8	35.2	500	0.00
1			575		1.2	618	0.53	59.5	1.3	896			5.8		45.9	56.1		
			208		4.6	878	0.53	62.7	5.1	1286			23.5		4.1	5.1		
	3/4	0.55	230	1.50	4.2	883	0.53	62.3	4.6	1283	0.70	69	21.2	N	5.1	6.3	900	3450
	5/4	0.55	460	1.50	2.1	878	0.53	62.6	2.3	1283	0.70	05	10.6		20.9	25.5	500	0.00
1 [575		1.7	881	0.53	62.4	1.9	1290			8.5		31.7	38.7		
			208		4.9	1105	0.63	67.4	6.0	1578			28.8		3.3	4.1		
MS402	1	0.75	230	1.40	4.6	1129	0.62	66.3	5.4	1570	0.73	70	25.9	м	4.2	5.2	900	3450
1013402	Т	0.75	460	1.40	2.3	1131	0.62	66.3	2.7	1570	0.75	70	13.0	IVI	17.1	20.9	900	5450
			575		1.8	1130	0.62	66.3	2.2	1563			10.3		26.3	32.1		
			208		6.6	1581	0.67	70.1	8.1	2101			40.5		2.4	2.9		
	1 1/2	1 10	230	1 20	5.8	1571	0.68	70.8	7.3	2094	0.72	75	37.2		2.8	3.4	900	2450
	1-1/2	1.10	460	1.30	2.9	1559	0.67	71.0	3.7	2094	0.72	75	18.6	М	11.3	13.8	900	3450
			575		2.3	1560	0.69	70.7	2.9	2080			14.5	_	18.4	22.4	1	
í Í			208		8.1	2043	0.70	73.2	9.6	2594			51.8		1.7	2.1		
		1 50	230	1.25	7.5	2062	0.69	72.8	8.7	2599	0.75	70	47.0	1.	2.1	2.5	000	2450
	2	1.50	460	1.25	3.7	2056	0.69	72.7	4.4	2599	0.75	76	23.5	L	8.3	10.1	900	3450
			575		3.1	2071	0.68	72.7	3.5	2614			19.3		12.8	15.6	1	
			208		9.9	2996	0.84	72.6	11.9	3644	0.85		61.9		1.8	2.2		3415
			230		10.4	3054	0.74	71.6	11.6	3466	0.75		60.3		1.8	2.2		3460
	3	2.20	440	1.15	5.0	3010	0.79	73.6	5.7	3531	0.82	73	28.8	J	7.4	9.0	1500	3440
			460		5.2	3042	0.74	72.7	5.8	3604	0.78		30.7		7.4	9.0	1	3460
			575		3.9	3014	0.77	73.5	4.7	3520	0.76		24.2		11.7	14.3	1	3470
1			208		15.7	4864	0.86	76.0	18.6	5830	0.87		106.0		1.0	1.2		3425
			230		15.0	4840	0.81	76.7	17.4	5407	0.78		102.7	К	1.0	1.2	1	3470
	5	3.70	440	1.15	7.5	4820	0.84	76.5	8.7	5472	0.83	77	47.6		4.2	5.1	1500	3460
			460		7.5	4814	0.81	76.6	8.7	5513	0.80		51.0	J	4.2	5.2	1	3470
MS4000			575		6.1	4617	0.76	80.5	6.9	5498	0.80		40.7		6.4	7.8	1	3470
i i			208		22.8	7146	0.87	76.8	27.0	8657	0.89		137.7		0.7	0.9		3415
			230		21.5	7023	0.82	78.0	25.0	8167	0.82		155.0		0.7	0.9	1	3460
	7-1/2	5.50	440	1.15	10.8	6996	0.85	78.0	12.8	8487	0.87	81	73.0	I.	3.0	3.6	1500	3440
			460		10.6	6925	0.82	78.3	12.6	8232	0.82		78.1	1	3.0	3.6	1	3460
			575		8.7	6876	0.79	81.4	10.0	8167	0.82		62.0	1	4.5	5.5	1	3460
			440		15.1	9667	0.84	78.0	18.0	11386	0.83		108.0		2.1	2.6		3420
	10	7.50	460	1.15	15.0	9561	0.80	78.0	18.6	11856	0.80	81	119.0	J	2.2	2.6	1500	3460
10 7.		575		12.5	9212	0.74	81.0	14.4	11330	0.79		90.7	1	3.3	4.0	1	3440	

*Calculated Value (Voltage x Current x Cos F)

**Calculated Value (Full Load current x Locked Rotor Current %)

Table 17

				Fuses	s / Circuit Bre	akers	NEMA	IEC
HP	kW	Volt	SF	(M	aximum Per N	EC)	Starter	Starter
			Amps	Standard Fuse	Time Delay Fuse	Circuit Breaker	Size	Size
		208	3.5	10	6	8	00	А
. (5		230	3.2	8	5	6	00	А
1/2	0.37	460	1.6	4	3	3	00	А
		575	1.3	3	2	2	00	А
		208	5.1	15	8	10	00	А
2/4	0.55	230	4.6	10	8	8	00	А
3/4	0.55	460	2.3	6	4	5	00	А
		575	1.9	5	3	4	00	А
		208	6.0	15	10	15	00	А
4	0.75	230	5.4	15	8	10	00	А
1	0.75	460	2.7	8	4	8	00	А
		575	2.2	6	3	5	00	А
		208	8.1	20	14	15	00	А
1 1 12	4 4 0	230	7.3	15	12	10	00	А
1-1/2	1.10	460	3.7	10	6	8	00	А
		575	2.9	8	5	6	00	А
		208	9.6	30	20	25	0	В
2	1 50	230	8.7	25	15	20	0	В
2	1.50	460	4.4	12	8	10	00	А
		575	3.5	10	6	8	00	А
		208	11.9	35	25	30	0	С
		230	11.6	30	20	25	0	С
3	2.2	440	5.7	20	10	15	0	А
		460	5.8	20	10	15	0	А
		575	4.7	15	8	10	0	А
		208	18.6	50	35	40	1	D
		230	17.4	50	30	40	1	D
5	3.7	440	8.7	25	15	20	0	В
		460	8.7	25	15	20	0	В
		575	6.9	20	10	15	0	А
		208	27.0	80	45	64	1	E
		230	25.0	75	40	60	1	E
7-1/2	5.5	440	12.8	35	20	25	1	С
		460	12.6	35	20	25	1	С
		575	10.0	30	15	25	1	В
		440	18.0	50	30	40	1	D
10	7.5	460	18.6	50	30	40	1	D
		575	14.4	40	25	30	1	С

Notes:

The Fuses and Circuit Breakers were calculated from the NEC table 430.52.

Starters and overloads should always be sized by a licensed electrician that is familiar with local codes and standards. The overloads for submersible motors should be Class 10 Quick Trip ambient compensated.

Motor				Service		Full I	Load		Serv	vice Facto	r (Max. L	oad)	Locked Rotor	KVA	Line-to-Line	e Resistance	Thrust	
Туре	Нр	kW	Volts	Factor	Amps	Watts*	Power Fact.	Eff. %	Amps	Watts*	Power Fact.	Eff. %	Amps**	Code		/ Max.)hms)	Bearing (LBS.)	RPN
			208		24.2	7149	0.82	80.2	27.5	8223	0.83	79.4	114.0					345
			230		23.4	7178	0.77	80.6	26.0	8286	0.80	80.8	130.0	н	0.6	0.7		348
	= + /2		440		11.6	7161	0.81	80.6	13.2	8249	0.82	80.4	61.0					347
	7-1/2	5.5	460	1.15	11.6	7117	0.77	80.6	13.0	8286	0.80	80.8	64.5	J	2.2	2.7	6070	348
			480		12.0	7283	0.73	80.2	13.0	8322	0.77	80.7	68.0					349
			575		9.3	7186	0.78	80.6	10.2	8228	0.81	80.8	51.0	Н	3.5	4.3		348
			208		32.0	9684	0.84	80.5	37.5	11483	0.85	79.2	126.0		0.4	0.5		342
			230		30.0	9680	0.81	81.7	33.5	11077	0.83	81.5	142.0		0.4	0.5		347
	10	7.5	440	1.15	15.2	9615	0.83	81.5	17.4	11139	0.84	81.0	67.5	G			6070	345
	10	7.5	460	1.15	15.0	9680	0.81	81.8	16.8	11110	0.83	81.7	71.0	0	1.7	2.0	0070	347
			480		15.0	9602	0.77	81.8	16.6	11041	0.80	82.0	75.0					348
			575		12.0	9680	0.81	81.4	13.4	11077	0.83	81.2	56.5		2.7	3.3		347
			208		46.5	14072	0.84	82.1	53.5	16383	0.85	81.1	198.0	G	0.3	0.3		343
			230		44.5	14005	0.79	83.0	49.5	16170	0.82	82.9	224.0	J	0.5	0.5		347
	15	11.0	440	1.15	22.0	13916	0.83	82.8	25.0	16004	0.84	82.1	100.0				6070	345
	15	11.0	460	1.15	21.6	13940	0.81	83.1	24.4	16136	0.83	82.8	106.0	н	1.1	1.3	0070	347
			480		21.6	13828	0.77	83.1	24.0	15963	0.80	83.2	112.0					34
			575		17.2	13875	0.81	83.0	19.4	16036	0.83	82.7	84.0	G	1.7	2.1		346
			208		61.5	19054	0.86	82.7	71.5	22153 0.86 81.5 310.0 H 0.1	0.2	0.2		343				
MS6000C			230		57.5	18783	0.82	84.0	65.0	21751	0.84	83.7	350.0		0.2	0.2		347
	20	15.0	440	1.15	29.0	18565	0.84	83.7	33.5	21701	0.85	82.9	166.0				6070	345
	20	10.0	460	1.15	29.0	18947	0.82	84.0	32.5	21751	0.84	83.7	176.0	J	0.7	0.9	0070	34
			480		29.0	18806	0.78	83.9	32.0	21549	0.81	83.9	186.0	Ĵ				348
			575		23.4	18877	0.81	83.8	26.0	21492	0.83	83.5	144.0		1.1	1.4		5.0
			208		75.0	23237	0.86	83.4	87.0	26955	0.86	82.3	395.0		0.2	0.2		343
			230		71.0	22910	0.81	84.6	80.0	26452	0.83	84.3	445.0					348
	25	18.5	440	1.15	36.0	23046	0.84	84.3	41.0	26559	0.85	83.6	212.0	J			6070	346
			460	-	35.5	22910	0.81	84.6	40.0	26452	0.83	84.3	224.0		0.6	0.7		348
			480		36.0	23046	0.77	84.3	39.5	26272	0.80	84.4	236.0					349
			575		28.5	23275	0.82	84.0	32.0	26452	0.83	83.7	180.0		0.9	1.1		348
			208		88.0	27582	0.87	83.3	104.0	32597	0.87	81.8	445.0	н	0.1	0.1		342
			230		81.0	27105	0.84	85.1	92.0	31153	0.85	84.4	500.0					347
	30	22.4	440	1.15	41.5	27199	0.86	84.5	48.0	31825	0.87	83.5	238.0				6070	345
			460		40.5	27105	0.84	85.1	46.0	31153	0.85	84.4	250.0	D.O J O.5	0.5	0.6		34
			480		40.0	26937	0.81	85.2	45.0	31052	0.83	85.0	265.0			4	348	
	L	L	575		32.0	27089	0.85	84.8	37.0	31690	0.86	84.0	194.0	Н	H 0.8 1.0	1.0		346
			440		56.0	37130	0.87	84.7	65.0	43592	0.88	83.6	290.0	1.				344
	40	29.8	460	1.15	54.5	36909	0.85	85.2	62.0	42482	0.86	84.7	310.0	н	0.3	0.4	6070	346
			480		54.5	37155	0.82	85.3	61.0	42600	0.84	85.1	330.0				4	348
			575	x Cos F)	43.5	36824	0.85	85.2	49.5	42890	0.87	84.7	250.0	G	0.6	0.7		347

**Calculated Value (Full Load current x Locked Rotor Current %)

Single Phase AC - W = $PF \times A \times V$ Three Phase AC - $P_{(W)} = V 3 \times PF \times I_{(A)} \times V_{L-L(V)}$ Square root of 3 = 1.7320508

				Fuses	s / Circuit Bre	akers	NEMA	IEC
HP	kW	Voltage	SF	(M	aximum Per N	EC)	Starter	Starter
			Amps	Standard	Time Delay	Circuit	Size	Size
				Fuse	Fuse	Breaker		
		208	27.5	80	45	60	1	E
		230	26.0	75	45	60	1	E
7 1/2	5.6	440	13.2	40	20	30	1	С
/ 1/2	5.0	460	13.0	35	20	25	1	С
		480	13.0	35	20	25	1	С
		575	10.2	30	18	30	1	В
		208	37.5	115	60	90	2	F
		230	33.5	100	60	80	2	F
10	7.5	440	17.4	50	30	40	1	D
10	7.5	460	16.8	50	30	40	1	D
		480	16.6	50	30	40	1	D
		575	13.4	40	20	30	1	С
		208	53.5	160	90	125	2	Н
		230	49.5	150	85	120	2	Н
15	11.2	440	25.0	75	40	60	2	E
15	11.2	460	24.4	70	40	55	2	E
		480	24.0	70	40	55	2	E
		575	19.4	50	30	40	2	D
		208	71.5	215	125	170	3	J
		230	65.0	195	110	155	3	J
20	15.0	440	33.5	100	50	80	2	F
20	15.0	460	32.5	90	50	70	2	F
		480	32.0	90	50	70	2	F
		575	26.0	75	45	60	2	E
		208	87.0	260	150	200	3	К
		230	80.0	240	140	190	3	К
25	10.0	440	41.0	120	72	90	2	G
25	18.6	460	40.0	120	70	90	2	G
		480	39.5	120	70	90	2	G
		575	32.0	90	50	70	2	F
		208	104.0	315	180	250	3	L
		230	92.0	275	160	220	3	L
20	22.4	440	48.0	140	80	110	3	Н
30	22.4	460	46.0	135	80	100	3	Н
		480	45.0	135	80	100	3	Н
		575	37.0	110	65	85	3	G
		440	65.0	190	110	150	3	J
	20.0	460	62.0	180	100	140	3	J
40	29.8	480	61.0	180	100	140	3	J
		575	49.5	145	85	115	3	I
	-		-					Table 20

Fuses and Breaker Selection of Three-Phase Submersible Motors (Class 10 Protection Required)

Special overload protection is required for submersible motors. When a motor is locked, the overload protection must trip within 10 seconds to protect the windings from damage. Properly sized adjustable overload relay, fixed heater or a Grundfos MP204 motor protection device, should be installed to protect the motor and meet the Class 10 protection requirement. Fixed heater overloads must be ambient temperature compensated, quick trip design. Ambient temperature compensation allows for protection at high and low air temperatures. Values shown in the table below are based on total line amps. Always follow National, State and Local electrical codes for overload protection selection and setting.

Notes:

The Fuses and Circuit Breakers were calculated from the NEC table 430.52.

Starters and Overloads should always be sized by a licensed electrician that is familiar with local codes and standards.

The Overloads for submersible motorsshould be Class 10 Quick trip ambient compensated.

6" 8" 10" Three Phase 60Hz Motors

				. .		Full	Load			Service	e Factor		Locked Rotor	10.14	Line-t	o-Line	Thrust	
Motor Type	Нр	kW	Volts	Service Factor	Amps	Watts*	Power Fact.	Eff. %	Amps	Watts*	Power Fact.	Eff. %	Amps**	KVA Code	Resis (Ω C		Bearing (LBS.)	RPM
MMS 6	50	37.3	460	1.15	73.0	47111	0.81	83.2	82.0	54226	0.83	82.6	405	Н	0.3	0.4	6000	3450
1011013-0	60	44.7	400	1.15	86.3	57070	0.83	85.0	97.0	66464	0.86	86.0	525	G	0.4	0.5	6000	3455
	40	29.8			53.3	36096	0.85	82.5	64.0	43853	0.86	83.0	371	К	0.3	0.4		3490
	50	37.3			65.6	44426	0.85	83.7	78.0	53446	0.86	84.0	429	J	0.2	0.3		3480
	60	44.7			77.5	52485	0.85	85.4	92.5	64118	0.87	86.0	592	К	0.2	0.2		3500
MMS 8000	75	55.9	460	1.15	101.0	65182	0.81	85.8	112.0	77635	0.87	86.0	650		0.1	0.2	13000	3300
	100	74.6			126.0	86335	0.86	86.6	150.0	105170	0.88	87.0	855		0.1	0.1		3500
	125	93.2			155.5	107787	0.87	86.9	184.0	129009	0.88	87.0	1104	J	0.1	0.1		3480
-	150	111.9			186.2	129068	0.87	86.6	220.0	154250	0.88	86.0	1276		0.1	0.1		3480
	175	130.5			226.2	151388	0.84	86.5	265.0	181578	0.86	88.0	1511	J	0.0	0.1		3510
MMS 10000	200	149.2	460	1.15	266.4	171924	0.81	86.6	305.0	204126	0.84	87.0	1891	к	0.0	0.1	13000	3520
	250	186.5			339.8	213879	0.79	86.7	405.0	264598	0.82	87.0	2471	ĸ	0.0	0.0		3320
	40	29.8			43.3	37086	0.86	81.0	49.0	42456	0.87	85.0	202	J	0.6	0.7		
	50	37.3			55.5	46983	0.85	79.0	62.2	53274	0.86	84.0	257	G	0.4	0.5		3500
	60	44.7			62.0	53720	0.87	84.0	71.0	62226	0.88	85.0	465	J	0.4	0.4		
MMS 8000	75	55.9	575	1.15	79.1	67749	0.86	81.0	89.4	78352	0.88	85.0	586		13000	3485		
	100	74.6			104.0	91147	0.88	82.0	118.0	104592	0.89	86.0	786		0.3			
	125	93.2			118.4	104947	0.89	88.0	144.0	127638	0.89	86.0	1007	R	0.1	0.1]	3470
	150	111.9			156.0	127399	0.82	86.0	176.0	147238	0.84	89.0	1230	Н	0.1	0.1		

*Calculated Value (Voltage x Current x Cos F)

**Calculated Value (Full Load current x Locked Rotor Current %)

Table 21

				Fuses	/ Circuit Brea	kers	NEMA	IEC
НР	kW	Voltage	SF	(Ma	aximum Per NE	C)	Starter	Starter
		voltage	Amps	Standard	Time Delay	Circuit	Size	Size
				Fuse	Fuse	Breaker		
50	37.3	460	82.0	240	140	190	3	Ν
60	44.7	460	97.0	290	170	230	4	-

Table 22

MMS 8" Three Phase 60 Hz Motors

				Fuses	/ Circuit Brea	akers	NEMA	IEC
НР	kW	Voltage	SF	(Ma	iximum Per NI	EC)	Starter	Starter
		ronage	Amps	Standard	Time Delay	Circuit	Size	Size
				Fuse	Fuse	Breaker		
40	29.8		64.0	175	100	150	3	Ν
50	37.3		78.0	225	125	175	5	
60	44.7		92.5	250	150	200		
75	55.9	460	112.0	300	175	250	4	
100	74.6		150.0	400	225	350		_
125	93.2		184.0	500	300	400	5	
150	111.9		220.0	600	350	500	5	
								Table 23

MMS 10" Three Phase 60 Hz Motors

				Fuses	/ Circuit Brea	kers	NEMA	IEC
НР	kW	Voltage	SF	(Ma	aximum Per NE	C)	Starter	Starter
			Amps	Standard	Time Delay	Circuit	Size	Size
				Fuse	Fuse	Breaker		
175	130.5		265.0	700	400	600	5	
200	149.2	460	305.0	800	500	700	5	-
250	186.5		405.0	1100	600	1000	6	
								Table 24

Notes:

The Fuses and Circuit Breakers were calculated from the NEC table 430.52.

Starters and Overloads should always be sized by a licensed electrician that is familiar with local codes and standards. The Overloads for submersible motors should be Class 10 Quick trip Ambient compensated.

MOTOR

- Verify motor nameplate data meets the application hp, voltage, phase, and Hertz.
- Check that the motor shaft rotates freely by hand on the second of two complete rotations.
- (On large motors, this usually requires a motor coupling with a cheater handle welded to it.)
- Check that the motor lead assembly is not damaged and is torqued properly.
- Measure cable insulation resistance to ground at 500 volts BEFORE SUBMERGED. It should be a minimum of 200 megohms or 200,000,000 ohms.
- Measure cable insulation resistance to ground at 500 volts AFTER SUBMERGED. It should be a minimum of 0.5 megohms or 500,000 ohms.
- Verify the system is operating within the ±10% of motor nameplate voltage requirement.
- Verify the system will not ever operate in excess of the maximum amps indicated on the nameplate.
- Verify the system is operating at 5% or less current unbalance.

Notice:

- Current unbalance between the phases should never exceed 5%. Under 3% should always be the goal. Contact your power company right away if the current unbalance between the phases exceeds 3%.
- The submersible motor amperage % unbalance is typically 6x greater than its voltage % unbalance.
- Thus, 0.8% voltage unbalance = greater than 5% current unbalance, and 1.7% voltage unbalance = greater than 10% current unbalance.

PUMP

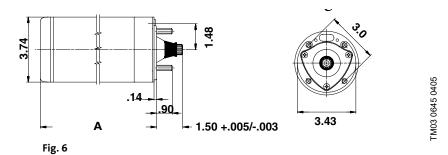
- Verify the pump nameplate and curve data meets the application hp, rpm, and flow/TDH requirements.
- Verify the pump NPSH requirement will be met at all times. Make sure to check with the specific pump being used.
- Check that the pump shaft rotates freely by hand before installation.
- Check for proper up and down (shaft or shaft height) for the specific pump being used.
- Check that the cable guard is not pinching the motor leads, especially where it enters and exits the guard.

Notice:

- Pumps and motors 5 hp and above should be assembled in a vertical position to ensure correct alignment.
- A motor-pump assembly 5 hp and above should never be lifted from a non-vertical position by the pump discharge because it can bend the shaft in one or both of the products.

POWER SUPPLY (Three-Phase)

- Verify the transformer kVA rating is adequate for the motor per the Grundfos Motor Guide requirement.
- Verify that all transformers have the same kVA rating.
- Verify the Three-Phase pump fuses or its circuit breaker are correctly sized per the Grundfos Motor Guide requirement.
- Verify the Three-Phase pump motor contactor is correctly sized per the Grundfos Motor Guide requirement.
- Verify the Three-Phase pump motor overload is ambient compensated.
- Verify the Three-Phase pump motor overload is NEMA Class 10.
- Verify the Three-Phase pump motor overload heaters are correctly selected based on the system's operating point and the maximum motor operating amps.
- At no time should the system operating amps or the motor overload system running point setting be higher than the motor nameplate maximum amp rating.
- Verify that the Grundfos MP204 motor protector is set correctly if used. Either Class 10 or "P" setting.


Notice:

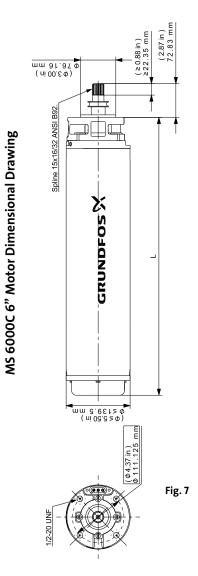
• Electronic overloads should be set at the motor nameplate amps.

MOTOR DIMENSIONS 4" MS402 / MS4000 AND 6" MS6000C

MS 402 4" Motor Dimensional Drawing

MS 402 4" Motor Dimensions

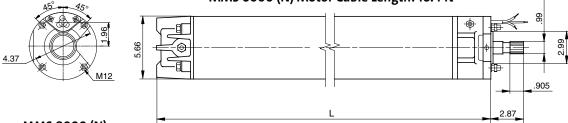
Grundfos Motor	Standard M	otor Output	Phase	Frequency	A-Dimensions	Motor Weight
Туре	P2 HP	P2 kW	PH	Hz	in. (mm)	lbs. (kg)
	1/2	0.37			11.0 (279.4)	21.0 (9.5)
ME 402	3/4	0.55	1	60	11.6 (294.6)	22.3 (10.1)
MS 402	1	0.75	1	00	12.2 (309.9)	23.6 (10.7)
	1-1/2	1.10			13.7 (348.0)	28.0 (12.7)
	1/2	0.37			9.0 (228.6)	17.2 (7.8)
	3/4	0.55			9.6 (243.8)	18.7 (8.5)
MS 402	1	0.75	3	60	11.0 (279.4)	20.7 (9.4)
	1-1/2	1.10			12.2 (309.9)	23.6 (10.7)
	2	1.50			13.7 (348.0)	27.3 (12.4)
						Table 25

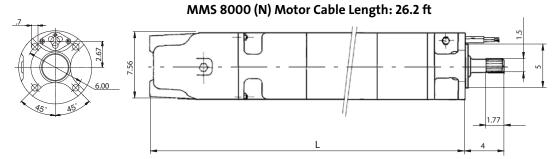

MS 4000 4" Motor Dimensions

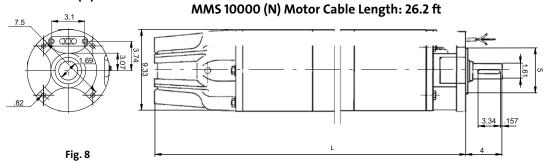
Grundfos Motor	Standard M	otor Output	Phase	Frequency	A-Dimensions	Motor Weight
Туре	P2 HP	P2 kW	PH	Hz	in. (mm)	lbs. (kg)
	2	1.50			19.5 (495.3)	44.1 (20.0)
MS 4000	3	2.20	1	60	22.6 (574.1)	53.0 (24.0)
	5	3.70			26.6 (675.6)	64.9 (29.0)
	3	2.20			18.0 (457.2)	39.7 (18.0)
MS 4000	5	3.70	3	60	22.7 (576.6)	52.9 (24.0)
1013 4000	7-1/2	5.50	5	00	26.6 (675.6)	63.9 (29.0)
	10	7.50			30.6 (777.24)	72.8 (33.0)
						Table 26

MS 6000C 6" Motor Dimensions

Grundfos Motor Type	Standard Motor Output		Phase	Frequency	L-Dimensions	Motor Weight
	P2 HP	P2 kW	PH	Hz	in. (mm)	lbs. (kg)
MS 6000C	5	3.70	3	60	26.4 (670.60)	81.6 (37.0)
	7-1/2	5.50			23.5 (597.0)	97.0 (44.0)
	10	7.50			24.7 (627.4)	103.6 (47.0)
	15	11.00			27.1 (688.3)	125.7 (57.0)
	20	15.00			29.6 (751.84)	143.3 (65.0)
	25	18.50			31.8 (807.72)	152.2 (69.0)
	30	22.00			34.1 (866.14)	169.8 (77.0)
	40	30.00			39.3 (998.2)	200.6 (91.0)
						Table 27




MMS 6", 8", 10" Motor Dimensional Drawing


MMS 6000 (N) Motor Cable Length: 16.4 ft

MMS 8000 (N)

MMS 10000 (N)

MMS 6, 8000, 10000, 6" 8" 10" Motor Dimensions

Grundfos Motor Type	Standard Motor Output		Phase	Frequency	L-Dimension	Motor Weight
	P2 HP	P2 kW	PH	Hz	in. (mm)	lbs. (kg)
MMS 6	50	37.00	3	60	51.6 (1310.6)	302.4 (137.0)
	60	45.00			56.1 (1425.0)	308.7 (140.0)
MMS 8000	40	30.00	3	60	43.7 (1110.0)	361.6 (164.0)
	50	37.00			45.6 (1158.2)	383.6 (383.6)
	60	45.00			50.0 (1270.0)	4.29.9 (195.0)
	75	55.00			53.1 (1348.7)	467.4 (212.0)
	100	75.00			62.5 (1587.5)	566.6 (257.0)
	125	92.00			72.0 (1828.8)	674.6 (306.0)
	150	110.00			81.1 (2060.0)	784.9 (356.0)
MMS 10000	175	132.00	3	60	73.6 (1869.4)	1040.6 (472.0)
	200	147.00			81.5 (2070.1)	1102.3 (500.0)
	250	190.00			94.5 (2400.3)	1360.3 (617.0)
						Table 28

POWER SUPPLY (1-PHASE)

- Verify the transformer kVA rating is adequate for the motor per the Grundfos Motor Guide requirement.
- Verify the motor control box hp rating and its voltage match the motor rating. If not, a premature failure of the control box or motor should be expected.

ELECTRICAL SURGE PROTECTION

- Verify the submersible motor has a dedicated surge arrestor. All submersible motors require a dedicated surge arrestor. Motors 5 hp and smaller marked "Equipped with Lightning Arrestors", have a built-in surge arrestor.
- Verify that the surge arrestor is mounted as close to the motor as practical. The location is usually in the pump panel, but sometimes it is placed at the well head in a separate electrical box.
- Verify the surge arrestor is grounded below the lowest drawdown water level. This is usually accomplished by attaching the drop cable ground wire to the motor lead or the motor ground.
- Verify the ground conductor size meets the minimum requirements of the National Electric Code and all other relevant.
- Verify the motor ground is connected to the electrical system ground.

ELECTRICAL DROP CABLE

- Verify the temperature rating of the drop cable typically 60 °C, 75 °C, 90 °C or 125 °C (140 °F, 167 °F, 194 °F or 257 °F).
- Verify whether the cable is single conductor or jacketed conductor.
- Verify the conductor size typically AWG, MCM or mm².
- Verify if the conductor material is copper; if not, determine the material and contact the factory for acceptability.
- Verify the drop cable meets or exceeds the requirements of NEC, State and Local electric codes and the Grundfos Motor Guide.

Notice:

• If the service entrance to pump panel or from the pump panel to motor cable is not a copper material, contact the factory for the correct length derating factors.

MOTOR COOLING

- Verify that the well water temperature does not exceed the maximum ambient temperature indicated on the nameplate of the motor.
- Verify there is a minimum of 10 feet of clear water between the bottom of the motor and the bottom of the well.
- Verify that all water entering the well is coming from below the lowest part of the motor.
- When using a VFD verify that at the lowest speed you can still meet the minimum flow past motor
- Verify that Three-Phase motors above 7.5 hp in a vertical potable water well should not exceed 100 starts in 24 hours and each start should include a minimum of 3 minutes ON and 10 minutes OFF.

Notice:

• If any water is entering the well above the lowest part of the motor, a flow sleeve is required.

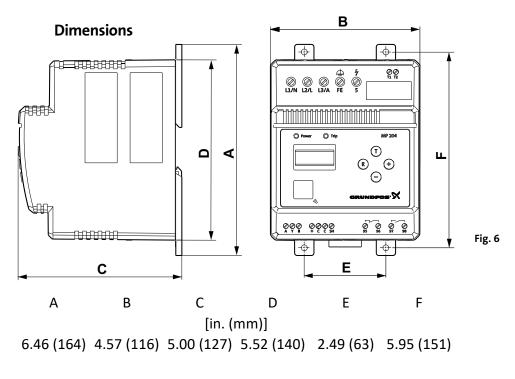
MOTOR-PUMP INSTALLATION

- Verify that the drop cable is supported to the drop pipe every 10 feet.
- Verify at least one spring loaded (non-drilled) check valve is in the drop pipe. Preferably, the first check valve should be located at the top of the first pipe joint above the pump discharge (~20 feet) if the pump does not have a check built in to its discharge.
- Verify all pipe joints are as tight as practical. Do not overtighten.
- Verify the rotation of the pump is correct. It is preferable to do this by checking the flow and current in both directions on Three-Phase motors. This can be done by having the electrician swap any two leads. This is considered "best practice" since pumps under some conditions can supply amp readings and a visual flow observation that can be extremely misleading.

Distributor Name		WELL DATA:
Distributor Contact		
N A		Total Dynamic Headft.
		Casing Diameterin.
62 Fax ()		Drop Pipe Diameterin.
		Drop Pipe Lengthin.
		Static Water Levelft.
Z		Drawdown (pumping) Water Levelft.
ATI		Check Valves at&&
City	StateZip	&ft.
Phone ()	Fax ()	Solid Orilled
Contact Name		Pump Inlet Settingft.
		Flow Sleeve ONo OYes, Dia
Z		Casing Depth
Address		Well Screen OPerforated Casing
City	StateZip	From
OO Phone ()	Fax ()	Well Depthft.
Contact Name		
	Date Failed	TOP PLUMBING:
Water Temperature		valves, throttling valves, pressure tank, etc.) and
MOTOR:		indicate the setting of each device.
Motor Manufacturer		
Motor Product No		
	HPVoltagePH	-
□ 1 PH: 2-wire or 3-wire Full Load Current		
	SF Amps	-
PUMP:		
		-
	Model No	-
Curve NoRating: NPSH Requiredft.		
Actual Pump Delivery		
Operating Cycle:		
	OFF (Hr./Min.)	
Your Name	Date / /	- L

Should be filled out at time of install (Page 1 of 2)

Should be filled out at time of install (Page 2 of 2)


POWER SUPPLY:	PUMP PANEL:		
Cable: Service Entrance to pump panel ftAWG/M	Pump Panel Manufacturer		
○ Copper ○ Aluminum	Short Circuit Device		
O Jacketed O Individual Conductors	○ Circuit Breaker		
	⊖Fuses		
Cable: Pump panel to MotorftAWG/MCM	ONon-Time Delay Amp Rating		
O Copper O Aluminum	OTime Delay Amp Rating		
O Jacketed O Individual Conductors			
Co.	Lightning/Surge Protection: OYes ONo		
	Lightning/Surge Protection: Mfg Model		
	Type of Starter OFull Voltage OSoft Start OVFD		
	MfrModelTDH		
	Setting% Full Volt. InSec. (Accel.)		
	VFD Accel. Time 0 to 30 Hz.: Sec. Max. Freq. Hz. VFD Decel. Time 30 to 0 Hz.: Sec. Min. Freq. Hz.		
POWER SUPPLY:	Volts/Hz. Profile (Linear or non-Linear)		
Wye or Delta (check one)	If Non-Linear, how configured?		
If Delta, is it an open or closed configuration? Open = 2 transformers Oclosed = 3 transformers	Output filter mfg Type		
	OVERLOAD PROTECTION:		
Output Voltage	Overload Relay Manufacturer		
KVA available	Part #Model		
INCOMING VOLTAGE TO PUMP PANEL:	HeaterPart #		
No Load L1-L2 L2-L3 L1-L3	ClassRange		
Full Load L1-L2 L2-L3 L1-L3	If Adjustable, Set atamps.		
L1-G L2-GL3-G	CUEO or MP204O		
	Warranty Registration No		
INSULATION CHECK:	Current Stop Limits: MaxA, MinA		
Initial Megs: Motor & Lead Only: BlackYellowRed Installed Megs: Motor, Lead & Cable: BlackYellowRed	(To view the next section of warning and stop limits, an R100 is		
-	required): War. Stop		
RUNNING AMPS: (For single phase applications L2 is = Neutral)	Temp. LimitsC°C°		
HOOKUP 1:	Current War. LimitsAA		
Full Load L1L2L3	Voltage Limits Low High Low High		
% Unbalance	Unbalance Limits % %		
HOOKUP 2:			
Full Load L1L2L3	Other electronic adjustable device:		
% Unbalance	MFG: Model:		
HOOKUP 3:	Overload Set:		
Full Load L1L2L3	Underload Set:		
% Unbalance			
Ground Wire SizeAWG/MCM	Single phase control box:		
System Grounded to:	MFG: Model: Mossured value:		
System Grounded to: O Well Head O Motor O Rod O ower Supply	Start Capacitor:mf. Measured value:		
Motor Surge/Lightning Protection () Yes () No Mfg	Run Capacitor:mf. Measured value:		
DC Ground Current mA			

Motor Protection MP204

MP204 protection and monitoring parameters

- Date and time stamp on faults
- Insulation resistance before start-up
- Temperature (Tempcon, PT sensor and thermal switch)
- Overload / underload
- Overvoltage / undervoltage
- Phase sequence
- Phase missing
- Power factor (cos φ)
- Power consumption
- Harmonic distortion
- Current unbalance
- Run and start capacitor (single-phase)
- Operating hours and number of start

All dimensions are [in. (mm)].

Motor Protection MP204

Startup and Operation:

A basic setting of the MP 204 can be made on the control panel. Additional functions must be set with the R100 remote control, Grundfos GO or PC Tool Water Utility.

Control panel

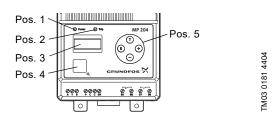
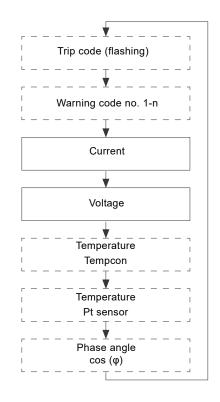


Fig. 9

Pos.	Description	Explanation
1	"Power" indicator light	 Flashes green until the MP 204 is ready for operation (power-on delay). Is permanently green when the MP 204 is ready for operation. Flashes red when communicating with the R100 or Grundfos GO.
2	"Trip" indicator light	Is red when the trip relay is activated.
3	Display	4 digits, for basic setting and data reading.
4	IR field	R100 or Grundfos GO communication.
5	Operating buttons	I I I I I I I I I I I I I I I I I I I

Button (Test)

Press [1] button to open trip relay connection 95-96 and close signal relay connection 97-98. The red "Trip" indicator light is on. The function is identical to the overload trip.


Button (Reset)

Press [R] button to change the tripped state to normal state with trip relay connection 95-96 closed and signal relay connection 97-98 open. The red "Trip" indicator light is off. This implies that the tripped state has actually ceased. The [R] button also resets warnings, if any.

Button (+)

Normally the actual current or temperature appears in the display. Press [] button to show information in the display, according to the following sequence:

Sequence in display

FM06 1752 2714

Fig. 10

- The trip code only appears if the MP 204 is tripped. Switches between "trip" and trip code.
- The warning code only appears if the limit value of one or more warnings has been exceeded, and if warning code indication has been activated.
- Temperatures only appear if the matching sensors have been connected and activated. If no Tempcon signal is received, "----" appears in the MP 204 display.
- Cos (ϕ) only appears if this indication has been activated with the R100 or Grundfos GO.

When the motor is operating, the display shows the actual value. When the motor stops, the display shows the last measured value.

Button (-)

Only used in connection with the basic setting of the MP 204.

Motor Protection MP204

Setting on control panel

Press [①] and [①] buttons simultaneously for a minimum of 5 seconds to place the MP 204 in the programming mode. When the display shows "...", the buttons can be released. The set value, e.g. "4.9 A", appears. The unit symbol "A" is flashing.

Enter the values of

- rated current
- nominal voltage
- trip class
- number of phases.

Note Insulation measurement is only possible of grounded (earthed) three-phase systems.

If no buttons are activated, the voltage appears after 10 seconds. After a further 10 seconds, the set voltage is stored automatically, and the programming mode end**s**. See Fig.11.

Changes in rated current must be finished by pressing [1] to store the change.

Rated current

Note

Set the rated motor current with [] and [] buttons. (See motor nameplate.)

- Press [1] to store the setting and continue, or

The programming mode ends automatically after 10 seconds, and the change is canceled. See Fig. 11.

Nominal voltage

Set the nominal voltage with [] and [] buttons.

- Press [1] to store the setting and continue, or
- Press [
 [
] to store the setting and finish.

The programming mode ends automatically after 10 seconds, and the change is stored. See Fig. 11 $\,$

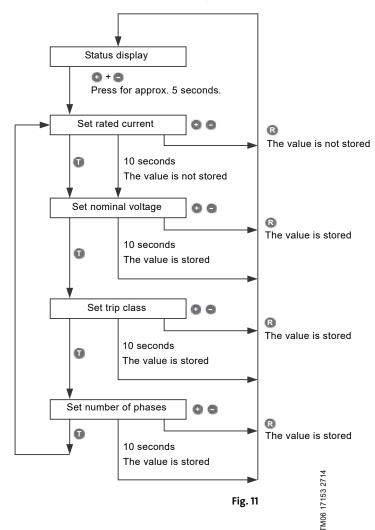
Trip class

Set the trip class with [1] and [1] buttons.

For submersible pumps, manual setting of the trip delay, class "P", is normally selected. The time is factory-set to 10 seconds. It can be changed with the R100 or Grundfos GO.

For other pumps, the required IEC trip class (1-45) is to be set. Normally class 10 is selected.

- Press [1] to store the setting and continue, or
- Press [
 [
] to store the setting and finish.


The programming mode ends automatically after 10 seconds, and the change is stored. See Fig. 11.

Number of phases

Set the number of phases with [] and [] buttons (1 phase, 3 phases (non-grounded (non-earthed)) or 3 phases w. FE (functional ground (earth)).

- Press [1] to store the setting and continue, or
- Press [
 [
] to store the setting and finish.

The programming mode ends automatically after 10 seconds, and the change is stored. See Fig. 11.

Learning function

The learning function is factory-set to "Enable".

After two minutes of continuous motor operation, "LRN" appears in the display for approx. 5 seconds, while the values are being stored in the MP 204.

If, for instance, a Pt sensor or capacitor has been replaced, reactivate the learning function by pressing [**R**] and [**C**] buttons for a minimum of 10 seconds.

The dot in the right side of the display is flashing. The MP 204 is waiting for current to pass through the unit for a minimum of 120 seconds. Then the phase sequence is measured and stored.

In single-phase systems, the MP 204 measures the capacity of the starting and run capacitors and stores the values as reference.

If a Pt100/Pt1000 sensor is installed, the cable impedances to the sensor are measured and stored as reference.

Example of basic settings display

MOTOR MONITORING AND PROTECTION SINGLE PHASE AND THREE PHASE

Motor Protection MP204 Fault / Warning Codes

Fault Code	Trip	Warning	Cause of trip/warning
2	Α	-	Missing phase
3	Α	-	PTC/thermal switch
4	А	-	Too many automatic restarts per 24 hours
9	Α	-	Wrong phase sequence
12	-	E	Service warning
15	А	-	Communication alarm for main system
18	Α	-	Commanded trip (not in alarm log)
20	Α	E	Low insulation resistance
21	-	E	Too many starts per hour
26	-	E	the motor is operating even if the MP
32	_	E	204 is tripped
32 40	A	E	Overvoltage
_	A		Undervoltage
48	A	E	Overload
56	A	E	Underload
64	А	Е	Overtemperature, Tempcon
			measurement
71	А	Е	Overtemperature, Pt100/Pt1000
			measurement
91	-	E	Signal fault, Tempcon sensor
111	A	E	Current unbalance
112	A	E	Cos (φ), max.
113	Α	E	Cos (φ), min.
120	Α	-	Auxiliary winding fault
123	Α	E	Starting capacitor, low
124	Α	E	Run capacitor, low
175	-	E	Signal fault, Pt100/Pt1000 sensor

MP204 Setting Ranges

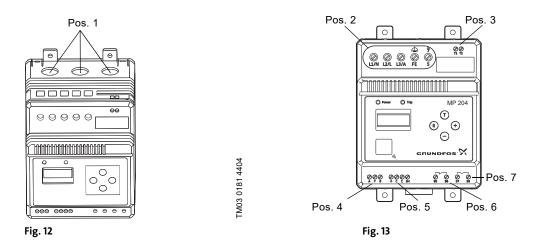

Setting Ranges	Setting Range	Resolution
Current without external current transformer	3-120 A	0.1 A
Current with external current transformer	120-999 A	1 A
Phase-to-phase voltage	80-610 VAC	1 V
Temperature via Pt100/Pt1000	32-356 °F (0-180 °C)	1.8 °F (1 °C)
Temperature via Tempcon	32-257 °F (0-125 °C)	1.8 °F (1 °C)
Power factor (cos (φ))	0 - 0.99	0.01
IEC trip class	1-45 and "P"	1
Special trip class "P" (pump), trip delay	0.1 - 30 s	0.1 s
External current transformer factor	1-100	1
Run capacitor (single-phase)	10-1000 μF	1 μF
Starting capacitor (single-phase)	10-1000 μF	1 μF
Number of starts per hour	0-65535	1
Number of starts per 24 hours	0-65535	1
Trip delay (other than current)	1-100 s	1 s
Automatic restarting time	10-3000 s	10 s
Power-on delay	1-19 s	1 s
	÷	Table 31

Table 29

MP204 Measuring Ranges

Measuring Ranges	Measuring Range	Accuracy	Resolution
Current without external current transformer 3-120 A \pm 1 % 0.1 A	3-120A	±1%	0.1 A
Current with external current transformer 120-999 A \pm 1 % 1 A	120-999A	±1%	1 A
Phase-to-phase voltage 80-610 VAC ± 1 % 1 V	80-610 VAC	±1%	1 V
Frequency 47-63 Hz ± 1 % 0.5 Hz	47-63 Hz	±1%	0.5 Hz
Insulation resistance 10-1 M Ω \pm 10 % 10 k Ω	10-1 MΩ	± 10 %	10 Κω
Temperature via Pt100/Pt1000 32-356 °F (0-180 °C) ± 1.8 °F (± 1 °C) 1.8 °F (1 °C)	32-356 °F (0-180 °C)	± 1.8 °F (± 1 °C)	1.8 °F (1 °C)
Temperature via Tempcon 32-257 °F (0-125 °C) ± 5.4 °F (± 3 °C) 1.8 °F (1 °C)	32-257 °F (0-125 °C)	± 5.4 °F (± 3 °C)	1.8 °F (1 °C)
Power consumption 0-16 MW ± 2 % 1 W	0-16 MW	± 2 %	1 W
Power factor (cos (ф)) 0 - 0.99 ± 2 % 0.01	0 - 0.99	± 2 %	0.01
Run capacitor (single-phase) 10-1000 μF ± 10 % 1 μF	10-1000 Mf	± 10 %	1 μF
Starting capacitor (single-phase) 10-1000 $\mu\text{F}\pm10$ % 1 μF	10-1000 μF	± 10 %	1 μF
Number of starts 0-65535 - 1	0-65535	-	1
Energy consumption 0-4 x 109 kWh ± 5 % 1 kWh	0-4 x 109 kWh	± 5 %	1 kWh
	-		Table 30

Table 30

TM03 0181 4505

Measuring Ranges

I3Entry for phase L3 to motorEntry for auxiliary winding2 AWGL1/NSupply: L1Supply: NeutralL2/LSupply: L2Supply: PhaseL3/ASupply: L3Auxiliary windingFEFunctional ground (Earth)5Insulation measurement3T1T2PTC/Thermal switch4YBGENIbus data B+	Position	Designation	Three-Phase Connection Single Phase Connection		Cable
I3Entry for phase L3 to motorEntry for auxiliary winding2 AWGI3Entry for phase L3 to motorEntry for auxiliary winding2 AWGL1/NSupply: L1Supply: NeutralL2/LSupply: L2Supply: PhaseL3/ASupply: L3Auxiliary windingFEFunctional ground (Earth)5Insulation measurement3T1T2PTC/Thermal switchAGENIbus data A4YReference/screenBGENIbus data B+CPt100/Pt1000 sensor14 AWG		11	Entry for phase L1 to motor	Entry for neutral	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	12	Entry for phase L2 to motor	Entry for phase	Max. Ø16 mm
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		13	Entry for phase L3 to motor	Entry for auxiliary winding	2 AWG
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		L1/N	Supply: L1	Supply: Neutral	
FE Functional ground (Earth) 10 AWG 5 Insulation measurement 10 AWG 3 T1 PTC/Thermal switch 4 Y PTC/Thermal switch B GENIbus data A F C C Pt100/Pt1000 sensor Max. 2.5 ²⁰ m		L2/L	Supply: L2	Supply: Phase	
FE Functional ground (Latti) 5 Insulation measurement 3 T1 T1 PTC/Thermal switch A GENIbus data A 4 Y Reference/screen B GENIbus data B + C Pt100/Pt1000 sensor Max. 2.5 ²⁰ m 14 AWG	2	L3/A	Supply: L3	Auxiliary winding	Max. 6 ¹⁾ mm ²
3 T1 PTC/Thermal switch 4 T2 GENIbus data A 4 Y Reference/screen B GENIbus data B 5 C Pt100/Pt1000 sensor C Max. 2.5 ²) m 14 AWG		FE	Functional gr	ound (Earth)	10 AWG
3 T2 A GENIbus data A 4 Y B GENIbus data B + C C Pt100/Pt1000 sensor Max. 2.5 ²) m 14 AWG		5	Insulation m	easurement	
T2 GENIbus data A 4 Y Reference/screen B GENIbus data B + C Pt100/Pt1000 sensor C 14 AWG	2	T1	PTC/Thormal switch		
4 Y Reference/screen B GENIbus data B +	5	T2	r rey merinai switch		
B GENIbus data B +		А	GENIbus		
5 C Pt100/Pt1000 sensor Max. 2.5 ²) m 14 AWG	4	Y	Reference	e/screen	
5 C Pt100/Pt1000 sensor Max. 2.5 ²) m C 14 AWG		В	GENIbus data B		
5 C 14 AWG		+			
C 14 AWG	5	С	Pt100/Pt1000 sensor		Max. 2.5 ²⁾ mm ²
SH Screen		С			14 AWG
		SH	Screen		
6 95 Trip relay NC	6	95	Trip relay NC		
7 97 Signal replay NO	7	97	Signal replay NO]
98		98			

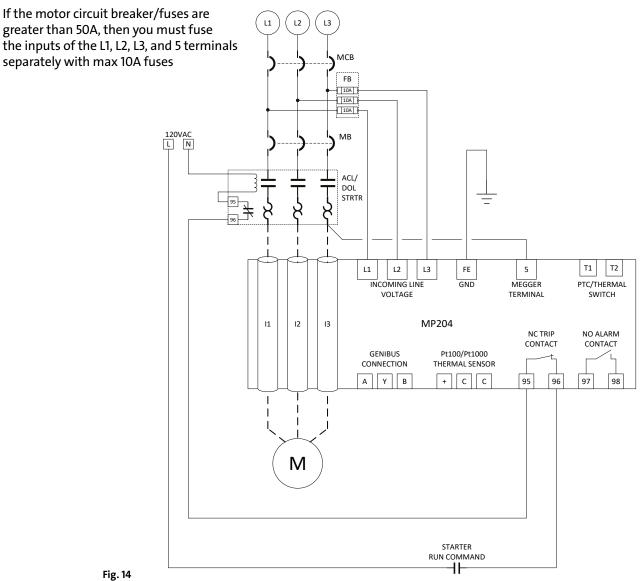
Table 32

UL requirement: For field wiring terminals, min. 140/167 °F (60/75 °C) stranded copper conductors must be used.

Wiring Diagram

MP204 - Three Phase with ACL/DOL Starter without Current Transformers

+ = Resistance input


C = Correction for lead resistance.

To be connected by means of a three-core Pt100/Pt1000 connection, otherwise the two "C" terminals are to be short-circuited.

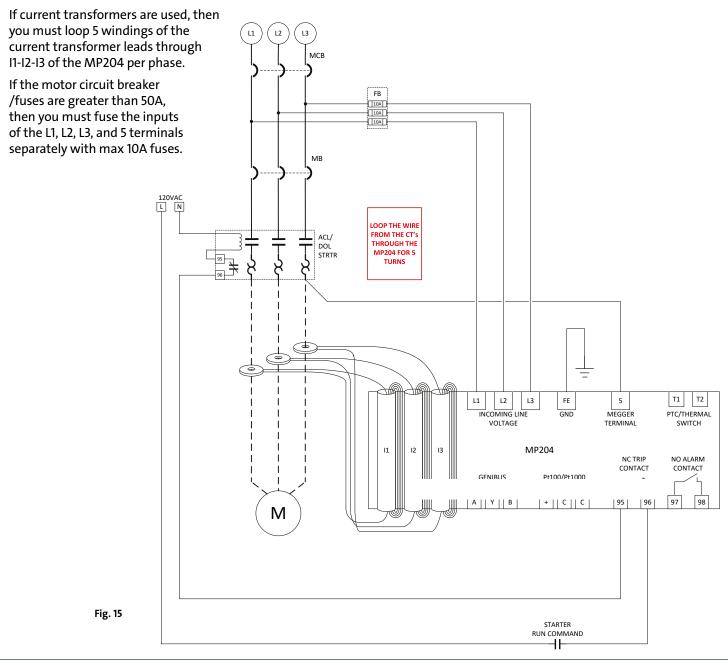
At motor currents up to and including 120A, the cables to the motor can be taken direct through the I1–I2–I3 tubes of the MP204.

At motor currents above 120A, current transformers must be used.

If current transformers are used, then you must loop 5 windings of the current transformer leads through I1-I2-I3 of the MP204 per phase.

42

Wiring Diagram MP204 - Three Phase with ACL/DOL Starter with Current Transformers


+ = Resistance input

C = Correction for lead resistance.

To be connected by means of a three-core Pt100/Pt1000 connection, otherwise the two "C" terminals are to be short-circuited.

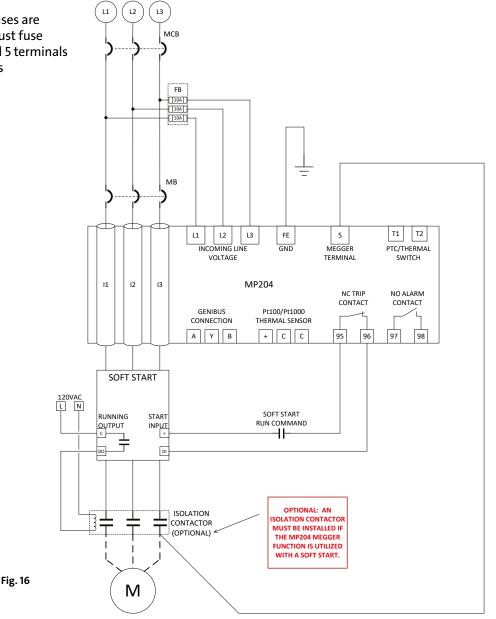
At motor currents up to and including 120A, the cables to the motor can be taken direct through the I1–I2–I3 tubes of the MP204.

At motor currents above 120A, current transformers must be used.

Wiring Diagram MP204 - Three Phase with Soft Start with Isolation, No Current Transformers

+ = Resistance input

C = Correction for lead resistance.


To be connected by means of a three-core Pt100/Pt1000 connection, otherwise the two "C" terminals are to be short-circuited.

At motor currents up to and including 120A, the cables to the motor can be taken direct through the I1–I2–I3 tubes of the MP204.

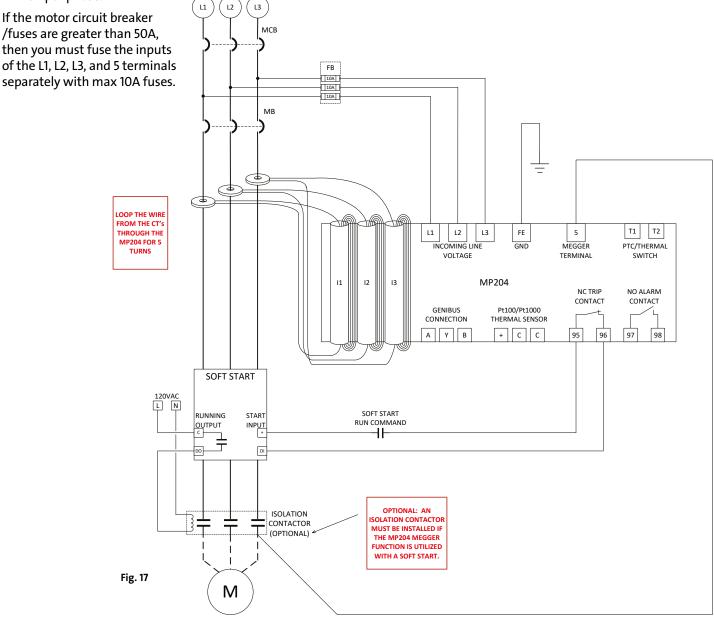
At motor currents above 120A, current transformers must be used.

If current transformers are used, then you must loop 5 windings of the current transformer leads through I1-I2-I3 of the MP204 per phase.

If the motor circuit breaker/fuses are greater than 50A, then you must fuse the inputs of the L1, L2, L3, and 5 terminals separately with max 10A fuses

Wiring Diagram MP204 - Three Phase with Soft Start with Isolation, with Current Transformers

+ = Resistance input


C = Correction for lead resistance.

To be connected by means of a three-core Pt100/Pt1000 connection, otherwise the two "C" terminals are to be short-circuited.

At motor currents up to and including 120A, the cables to the motor can be taken direct through the I1–I2–I3 tubes of the MP204.

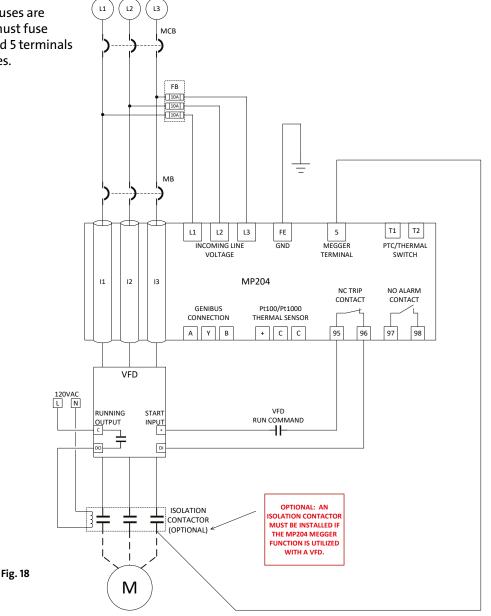
At motor currents above 120A, current transformers must be used.

If current transformers are used, then you must loop 5 windings of the current transformer leads through I1-I2-I3 of the MP204 per phase.

Wiring Diagram MP204 - Three Phase with VFD, with Isolation, No Current Transformers

+ = Resistance input

C = Correction for lead resistance.


To be connected by means of a three-core Pt100/Pt1000 connection, otherwise the two "C" terminals are to be short-circuited.

At motor currents up to and including 120A, the cables to the motor can be taken direct through the I1–I2–I3 tubes of the MP204.

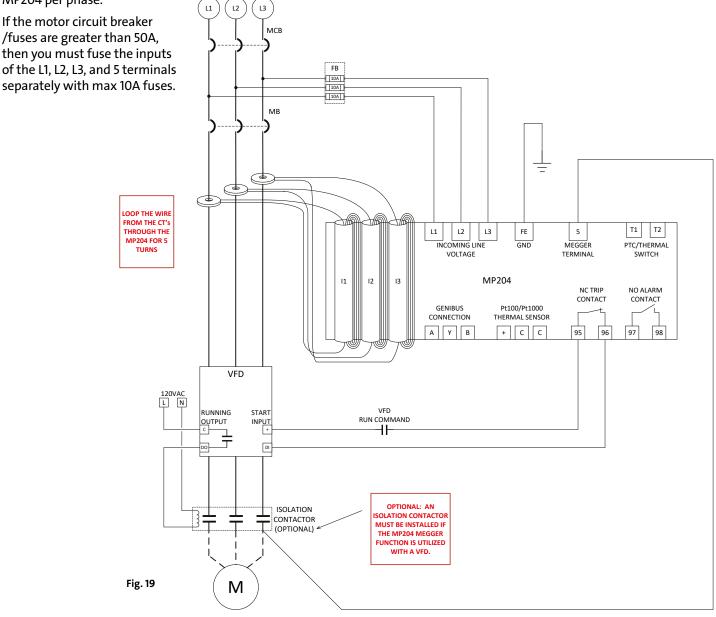
At motor currents above 120A, current transformers must be used.

If current transformers are used, then you must loop 5 windings of the current transformer leads through I1-I2-I3 of the MP204 per phase.

If the motor circuit breaker/fuses are greater than 50A, then you must fuse the inputs of the L1, L2, L3, and 5 terminals separately with max 10A fuses.

Wiring Diagram MP204 - Three Phase with VFD, with Isolation, with Current Transformers

+ = Resistance input

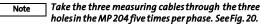

C = Correction for lead resistance.

To be connected by means of a three-core Pt100/Pt1000 connection, otherwise the two "C" terminals are to be short-circuited.

At motor currents up to and including 120A, the cables to the motor can be taken direct through the I1–I2–I3 tubes of the MP204.

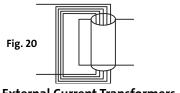
At motor currents above 120A, current transformers must be used.

If current transformers are used, then you must loop 5 windings of the current transformer leads through I1-I2-I3 of the MP204 per phase.



MOTOR MONITORING AND PROTECTION **MP204 EXTERNAL CURRENT TRANSFORMER SELECTION**

External Current Transformers


At motor currents above 120 A, external current transformers must be used. Fit the transformers as shown in Fig.20

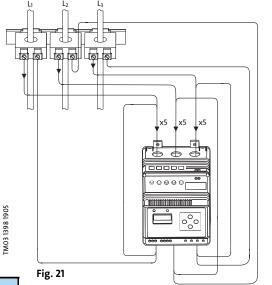
Note

The three current transformers must befitted in the same direction, and the measuring cables must be connected in thesame way.

Current transformers

Product Number	Current Transformer Ratio	lmax.	P _{max} .
96095274	200:5	200 A	5 VA
96095275	300:5	300 A	5 VA
96095276	500:5	500 A	5 VA
96095277	750:5	750 A	5 VA
96095278	1000:5	1000 A	5 VA
			Table 33

Function


- · Phase-sequence monitoring
- Indication of current or temperature •
- (user selection) •
- Input for PTC/thermal switch
- Indication of temperature in °F or °C (user selection)
- 4-digit, 7-segment display
- Setting and status reading with the R100 or Grundfos GO
- Setting and status reading via the GENIbus.

Tripping conditions

- Overload
- Underload (dry running)
- Temperature (Tempcon sensor, PTC/thermal switch and Pt • sensor)
- Missing phase
- Phase sequence
- Overvoltage
- Undervoltage
- Power factor (cos (φ))
- Current unbalance.

Warnings

- Overload
- Underload
- Temperature (Tempcon, see section Setting on control panel, and Pt sensor)
- Overvoltage
- Undervoltage
- Power factor (cos (φ)) •

FM03 0172 4304

In connection with single- and three-Note phase connection.

Warnings (continued)

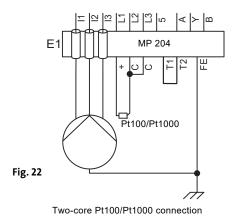
- . Run capacitor (single-phase operation)
- Starting capacitor (single-phase operation)
- Loss of communication in network
- Harmonic distortion.

Learning function

- Phase sequence (three-phase operation)
- Run capacitor (single-phase operation)
- Starting capacitor (single-phase operation)
- Identification and measurement of Pt100/Pt1000 sensor

circuit.

- **Factory settings**
- Current limit: 0 A
- Nominal voltage: 400 V Class: P (trip delay: 5 seconds) Trip delay: 5 seconds Number of phases: 3, non-grounded (non-earthed) Power-on delay: 5 seconds. Learning function: Active. Active trip limits Overload according to class
- Underload: 40 %
 - Overvoltage: + 20 %Undervoltage: 20 % Phase-sequence monitoring Current
 - unbalance: 10 %
 - PTC/thermal switch.


The overvoltage and undervoltage trip limits will be deactivated automatically if the temperature monitoring with Tempcon or Pt100/Pt1000 has been set to active.

Active warnings

Run capacitor, low: - 50 % Starting capacitor, low: - 50 %.

Input for Pt100/Pt1000

Terminal designation	Description
+	Resistance input.
С	Correction for lead resistance. To be connected by means of a three-core Pt100/Pt1000 connection, otherwise the two "C" terminals are to be short-circuited.
С	Correction for lead resistance. To be connected by means of a three-core Pt100/Pt1000 connection, otherwise the two "C" terminals are to be short-circuited.
SH	0 V (screen).

Back-up fuses

Maximum back-up fuse sizes which may be used for the MP 204 appear in the table below:

MP204	Fuses
-------	-------

MP 204	Max. Size (A)	Туре
Without external current transformer	120	RK5
With 200/5 external current transformer	200	RK5
With 300/5 external current transformer	300	RK5
With 500/5 external current transformer	500	RK5
With 750/5 external current transformer	750	RK5
With 1000/5 external current transformer	1000	RK5

Table 34

At motor currents up to and including 120 A, the cables to the motor can be taken direct through the I1-I2-I3 of the MP 204.

At motor currents above 120 A, current transformers must be used. If back-up fuses above 50 A are used, the

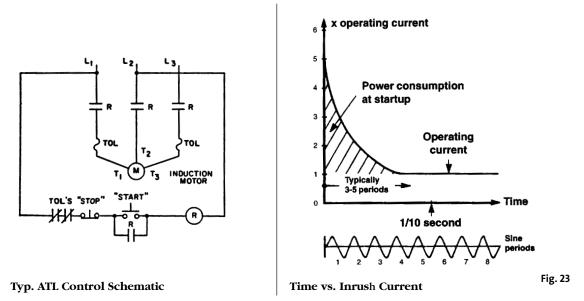
TM03 1397 2205

Note L1-L2-L3 and "5" to the MP 204 must be protected separately with max. 10 A fuses.

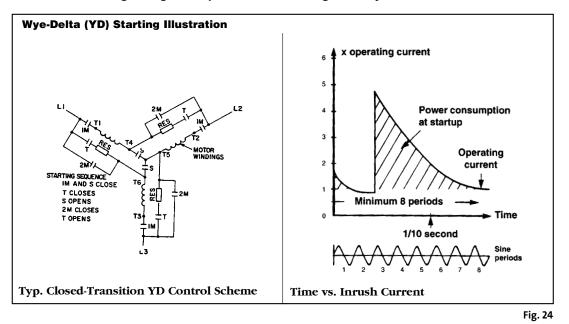
If current transformers are used, the L1-L2-L3 and "5" to the MP 204 must be protected with max. 10 A fuses.

Input for PTC/thermal switch

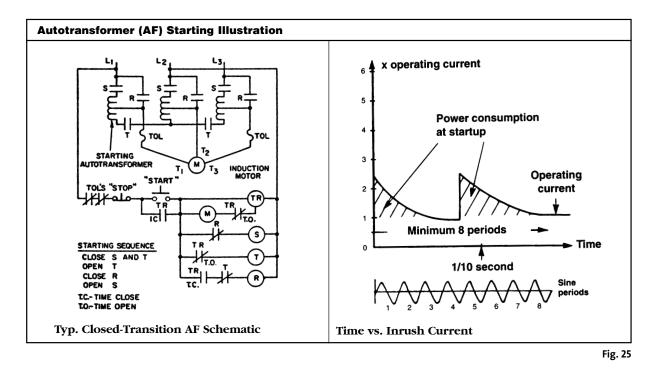
T1 Connection of PTC/thermal switch	Terminal designation	Description
	T1	Connection of BTC/thormal awitch
T2	T2	


If not used, short-circuit the PTC input using a wire, or deactivate it with the R100 or Grundfos GO.

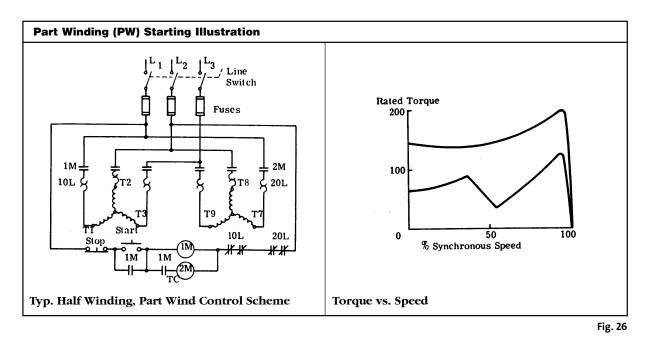
MP204 Wire Size


Stand-alone the MP204 is rated up to 120A maximum. External current transformers (CTs) can be added for extending the current handling up to 1000A. Maximum wire gauge useable with MP204 built in wire path is #2 AWG. External CTs allow for use of cables up to 1.3" in diameter. When using external CTs #16 AWG or larger wire should be used for measuring current. The measuring wires are wrapped thru the MP204 five times for each phase. **See fig. 20**.

Across-the-Line (ATL) Starting Illustration



The ATL starting method will always provide the lowest internal heat generation in the motor and the highest starting torque. Many submersible motor/pump manufactures recommended motors larger than 60 Hp (45kW) be started using some form of reduced voltage/inrush starter, if allowed by the power utility. **The mechanical stresses associate with ATL starting of large horsepower motors can significantly reduce motor life.**


The YD starting is the most common method for reducing start-up torque and inrush current in Europe. The use of YD starters in the U.S is very limited with submersible motors, as the motor must be specifically configured for the application. Submersible systems employing the YD starting scheme are generally more expensive, as separate power cables and motor leads are required in each installation. Submersible motors configured for YD starting (two motor lead sockets in lieu of one) are more expensive than standard motors.

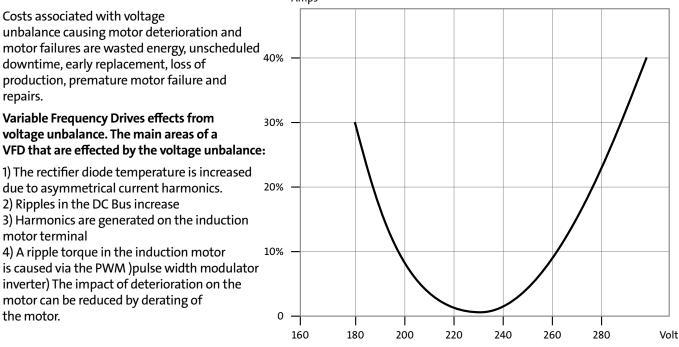
50

In submersible applications, the tap settings on the AF depends on the percentage of the maximum allowable cable length used in the system. If the cable length is less than 50% of the maximum allowable, either the 65% or 80% taps may be used. When the cable length is more than 50% of the allowable, the 80% tap should be used.

Typical schematic diagram of a part winding starter and the associated torque vs. speed curve.

Three Phase Power Supply Unbalance

Three Phase Unbalance is a major cause of shortened motor life and motor failures. It is critical that every Three-Phase motor has the incoming voltage and current going to the motor, checked at start-up, and periodically thereafter. The current unbalance supplying to the motor is what matters to the motor.

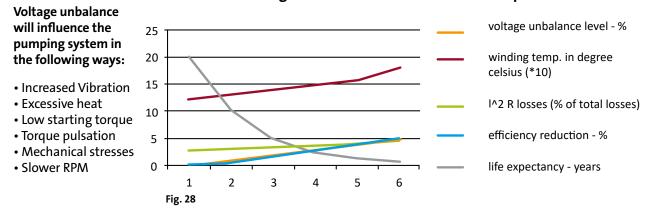

There are two types of unbalance that effect the longevity of the motor. Voltage Unbalance and Current Unbalance and Current Asymmetry (amp unbalance). Incoming voltage unbalance is the power measured on each phase coming into the pump panel. Current unbalance is the measurement of the amps on each phase going out of the panel to the motor. Current unbalance between the phases should not exceed 5%. Under 3% should be the goal. Contact your power company to correct the problem if the Current Unbalance between the legs is over 3%. It is clearly visible in induction motors where 1% of voltage unbalance can cause a 6 to 10 % current unbalance. Current is amps.

Helping Action (Motor Derating): Upsize the motor if you are in an area with voltage unbalance. (Motor Derating does not correct the issue of unbalance as you are still sending unbalance to the motor windings). What derating does, is keep the motor temperature down because you are not running the motor at full load, which with unbalance is detrimental to the motor.

NOTE: The positioning of the drop cables can also create current unbalance. If jacketed cables are used, no problems should be expected but should always be checked. If single lead is used it is always recommend placing the Three-Phase conductors on one side of the riser pipe and then have the earth/ground lead diagonally opposite.

First, we must understand that unbalance can change throughout the day, week, month and/or year. Example is that you may have 1% at 3:00 AM and 11% at 4 PM. Use an MP204 pump protector to help protect the motor. Having a Grundfos MP204 motor protection device running 24/7 is the first defense to help monitor and find these problems before they have a detrimental effect on the motor.

Poor voltage unbalance can create poor current unbalance. Unbalance voltage can highly amplify current unbalance (amps) to increase 6 to 10 times what the voltage unbalance is. Unbalanced voltage will result in increased vibration, excessive heat build-up in the motor, lower starting torque, torque pulsation, mechanical stresses, slower rpm and early motor failure.

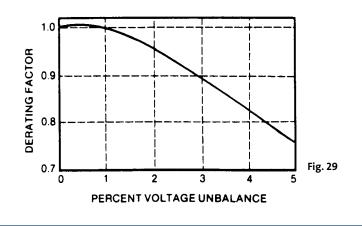


Current variation as a function of over- and undervoltage on a 230 V motor.

Three Phase Voltage Asymmetry (Incoming Voltage Unbalance) Lifetime Expectation

Three phase voltage/current unbalance is a major cause of shortened motor life and related motor failures. Therefore, it is critical that all three phase motor applications verify voltage/current balance upon startup and periodically thereafter. The voltage/current balance verification should include the incoming power and the motor leads after the motor starter.

There are two different types of unbalance that affect the life of a motor. Voltage unbalance and current unbalance. Incoming voltage unbalance is the power measured on each leg entering the pump panel. Current unbalance is the measurement of amps on each leg exiting the pump panel. It is recommended that the voltage unbalance not exceed 1% as this 1% voltage unbalance will equate to 6% - 10% current unbalance. It is recommended that the current unbalance to 3%.



Effect of voltage unbalance on induction motor performance

Reference information for figure above: Plummer, "ASYMMETRY IN DISTRIBUTION SYSTEMS: CAUSES, HARMFUL EFFECTS AND REMEDIES" and reference from Quality Energy, "Eliminate Unbalanced Voltages-Take Action"

Ultimately it is recommended to work with electrical utilities, service providers or internal voltage distribution to obtain a voltage unbalance under 1%. However, at times this may not be possible. In this instance, derating the motor is an option. Derating the motor does not change the fact that the motor is still running in an unbalance condition and the motor windings still are exposed to harmful side effects of that unbalance. Derating the motor allows the motor to run at less than full load thus reducing the harmful effects of heat. **See fig. 29** for derating recommendations.

Motor Derating for Voltage Unbalance

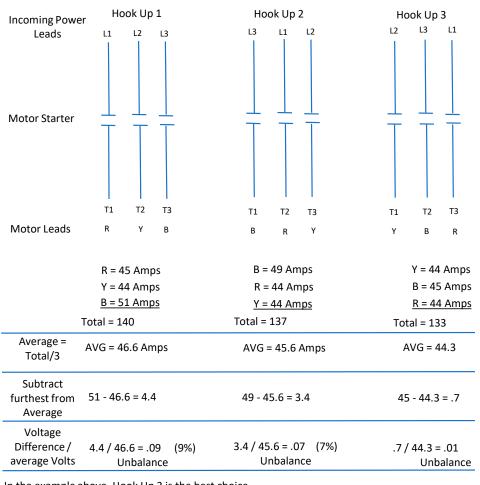
How to measure Voltage Unbalance

- Measure the incoming voltage between L1 L2, L1 L3, L2 L3 and record the values
- Roll the incoming voltage legs one position to the right, measure and record the new values
- Again, roll the incoming voltage one position to the right, measure and record the final values
- Average the three different measurement groups
- Subtract the lowest voltage measurement from the calculated average
- Divide that subtracted value total by the average to obtain the percentage of voltage unbalance

Incoming Powe	r Hook Up 1	Hook Up 2	Hook Up 3
Leads	L1 L2 L3	L3 L1 L2	L2 L3 L1
Motor Starter			
	ŢŢŢ		
	T1 T2 T3	T1 T2 T3	T1 T2 T3
Motor Leads	R Y B	B R Y	Y B R
	L1 - L2 = 465 L1 - L3 = 467	L3 - L1 = 467 L3 - L2 = 467	L2 - L3 = 468 L2 - L1 = 467
	<u>L2 - L3 = 461</u>	<u>L1 - L2 = 463</u>	<u>L3 - L1 = 467</u>
	Total = 1393	Total = 1397	Total = 1402
Average = Total/3	AVG = 464.3	AVG = 465.6	AVG = 467.3
Subtract Lowest from Average	464.3 - 461 = 3.3	464.3 - 461 = 2.6	468 - 467.3 = 0.7
Voltage Difference / average Volts	3.3 / 464.3 = .007 (.7%) Unbalance	2.6 / 465.6 = .005 (.5%) Unbalance	.7 / 467.3 = .001 (.1%) Unbalance

Voltage Unbalance Calculation

While all examples are under 1%, best practice would choose Hook Up 3; as it is the lowest voltage unbalance. Fig. 30 Note: 1% Voltage unbalance will equate to 6% - 10% Current Unbalance


Current Unbalance

Having a low Current Unbalance will give the motor the best environment for longest life. Therefore, it is important to have all three phases of the motor loaded equally. Additionally, it is important that rotation is correct. Rotation can be checked by reversing any two motor leads and determining which connection provides the highest performance.

54

How to measure Current Unbalance

- Clamp-On measure the amperage on the R, Y, and B leads and record the value
- Roll the R, Y, and B, leads to the right, measure and record the new values
- Again, roll the R, Y, and B leads one position to the right, measure and record the final values
- Average the three different measurement groups
- Subtract the lowest/furthest Amperage measurement from the calculated average
- Divide that subtracted value total by the average to obtain the percentage of current unbalance

Current Unbalance Calculation

In the example above, Hook Up 3 is the best choice. It is recommended to have a Current Unbalance. Fig. 31

GRUNDFOS GO

Grundfos GO is a comprehensive platform for remote product control, product selection and product information. It offers intuitive, handheld assistance and access to Grundfos online tools and it saves valuable time for reporting and data collection.

The Grundfos Go Remote app is available from Apple App store and Android market and must be used in conjunction with one of the Mobile Interface devices MI 202, MI 204 or MI 301.

The MI 202 and MI 204 are add-on modules with built-in infrared and radio communication. The MI 202 can be used in conjunction with Apple devices with 30-pin connector (iPhone 4, 4s and iPod touch

4G). The MI 204 can be used in conjunction with Apple devices with lightning connector. The MI301 is a universal bluetooth module that can be used with both Android and Apple devices.

The Grundfos Go Remote concept replaces the Grundfos R100 remote control. This means that all products supported by the R100 are supported by the Grundfos Go Remote.

While connected to a Grundfos product, the following features are available:

- Product dashboard gives the user a quick overview of the connected product
- Status data monitor status data from the Grundfos product
- Alarms and warnings see detailed alarm information with timestamps
- Configuration/commissioning
- Create installation report in pdf format
- Read/write profiles copy configuration from one product to another
- Supports 28 languages

PRODUCT INFORMATION AND SELECTION FEATURES:

- Search product by: Number, Name, or QR code
- Size a product (Heating, Air-conditioning, Pressure boosting & Wastewater)
- Catalog
- Replace product
- Compare products
- Product view
- Projects view
- Projects
- Favorites

Phase Converters

For locations where the utility source is single-phase and the desired power is three-phase, a phase converter can be used.

All phase converters have difficulty balancing output voltage in changing load conditions like those seen in submersible motor applications. Balanced voltage supply is important in order to avoid elevated motor operating temperatures and reduced horsepower performance. If a phase converter must be used, electronic, solid-state designed converters are recommended.

Guidelines for using a phase converter:

- Avoid loading the motor to rated horsepower Do not load into service factor
- Ensure 3 ft/sec flow past the motor Utilize motor shroud where possible
- Current unbalance between the phases (legs) should not exceed 5%. Under 3% should always be the goal. Contact the power company to correct the problem if the Current Unbalance between the legs is over 3%
- Input wire gauge must be sized to accommodate single-phase input current
- Review voltage drop when determining wire gauge. Voltage drop is dependent on wire length and gauge
- Use time delay fuses or circuit breakers in pump panel
- Review factory default motor overload relay (trip current adjustment) setting
- Use a Grundfos MP204 motor protector. Can be used on the input power side of solid-state phase converters and drives.

Reduced Voltage Starters

Locations with weak utility power may require the usage of a reduced voltage starter to limit voltage sagging. Reduced voltage starters can reduce starting torque and mechanical stresses on pump/motor shafts, couplings and piping. Water hammer issues cause by rapid acceleration of water during start-up can also be reduced by using reduced voltage starters.

Two types of reduce-voltage starters are recommended for use with submersible motors:

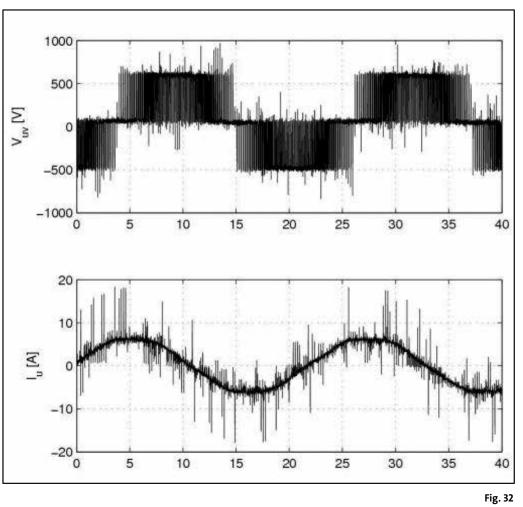
- 1) Autotransformer (stepdown type transformer)
- 2) Electronic solid-state (Soft start). Both reduce motor input voltage during startup.

Autotransformers reduces the motor voltage by a fixed ratio (step). Taps provided on the transformer are usually rated at 50%, 65%, and 80% of line voltage (**See Table 35** for approximate power values). It's recommended when sizing a reduced-voltage started, use a Closed-Transition design, as this design keeps the motor connected to power through the start process.

% of Full Voltage Values			
% Voltage Tap	% Motor Inrush Current	% Starting Torque	
80	80	64	
65	65	42	
50	50	25	
		Table 35	

In submersible applications, the tap settings depends on the percentage of maximum allowable cable length used in the system. If the cable length is less than 50% of the maximum allowable, either the 65% or 80% taps may be used. When the cable length is more than 50% of the allowable, the 80% tap should be used.

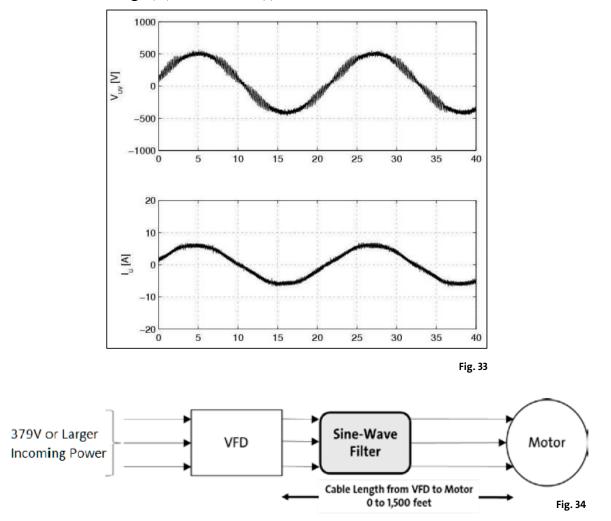
Always review factory default settings for time delay transition between reduced and full voltage power. Submersible motors require full voltage within 3-seconds to prevent excessive radial load and thrust bearing wear.


Electronic solid-state starters provide smooth, step-less acceleration and deceleration of submersible motors from zero to full speed over an adjustable time range. Acceleration and deceleration ramp times should be limited to no more than 3 seconds with a minimum voltage setting of 55%. In general, it is recommended to install a bypass contactor in conjunction with soft starter so the motor runs in across-the-line condition during operation.

Grundfos MS/MMS submersible motors can be used with variable frequency drives (VFD) provided the following guidelines are followed.

Variable frequency drives inherently produce voltage spikes due to differences between cable length impedance and motor surge impedance. Voltage spikes in excess of 850V may exceed motor insulation protection, causing premature motor failure. Known as, Reflected Wave Phenomenon this voltage spiking is common in applications where there are long distances between the VFD and motor, typical of submersible pump applications.

In **Fig. 32**, the voltage (Vuv) graph shows a common VFD output square waveform with voltage spiking rather than a desired sinusoidal waveform. The current waveform (Iu) while more sinusoidal in appearance, still has damaging spikes.



Voltage (V) and Current (I) at Motor without Sine-Wave Filter

Sine-wave filters are designed to provide the desired smooth sine-wave VFD output, ideal for the operation of a submersible motor. Output filters are used to reduce the impedance differences between cable and motor. Therefore, reducing voltage spikes on motor windings, insulation components, and for decreasing acoustic noise from the VFD.

58

When a sine-wave filter is applied properly between the VFD and motor, the waveforms are nearly smooth. **See Fig. 33 and 34**.

Voltage (V) and Current (I) at Motor with Sine-Wave Filter

To ensure warranty considerations, Grundfos recommends installing a sine-wave filter or equivalent type RLC filter when a frequency converter (VFD) is used on a submersible pump application if any of the following conditions are met:

- 1) Motor name plate voltage is over 379V.
- 2) Drive uses pulse width modulation (PWM) and/or IGBT-BJT switches .
- 3) VFD voltage rise-time less than 2 msec (NEMA MG 1-2011).
- 4) Peak voltage at motor terminals exceed 850 volts..
- 5) Power cable length from VFD output to submersible motor terminals is 0 to 1,500 ft.
 - a. For applications with cable length greater than 1,500 ft., contact Grundfos Pumps when using a Grundfos drive. b. If not a Grundfos drive, contact drive manufacturer for acceptable cable lengths.

Variable Frequency Drives

If not using a Grundfos VFD/sine-wave filter combination, the drive manufacturer will need the following information to ensure proper sine-wave filter type and size. All items are required:

1) VFD model

2) Type of application

3) Carrier frequency used

4) Motor nameplate voltage

5) Motor nameplate service factor Amps

6) Motor insulation rating

7) Cable type, size, and length from the drive output to the motor terminals

Notice:

1) RL only or dv/dt types of filters are not considered equivalent to sine-wave filters.

2) The use of line-side filter on power entering the drive does not replace the need for additional output or load-side sine-wave filter.

To ensure proper motor cooling, the following is recommended:

1) Minimum VFD frequency set to provide no less than required velocity in feet per second past the motor:

a. 4-inch motors 0.25 ft./sec

b. 6 to 12-inch motors 0.50 ft./sec

2) Supply voltage within the +6% and -10% from nameplate (example single voltage rated motor of 460V, would be minimum of 414V to maximum 487V). For 60Hz rated multi-voltage motors, the voltage variant of 440/460/480 volt will function within minimum of 396V to maximum 509V.

Recommended VFD set point values:

1) Volt to Hz profile should be set to variable torque, square law, and not set to linear.

2) Voltage and current unbalance between phases limits:

a. Maximum current unbalance 5% (max with not over 3% recommended)

- 3) Motor protection set point values:
 - a. Maximum input current rated at name plate current
 - b. Overload trip protection set at 115% of systems operating current
 - c. Overload trip protection equal to or faster than NEMA Class 10
 - d. Underload protection is normally set at 80% of normal system load (current)
- 4) Permissible frequency range 30Hz to 60Hz on Grundfos submersible motors.

a. Always check with other manufacturers as some have a different minimum frequency on specific motors.

5) VFD acceleration and deceleration should be set to no more than 3-seconds:

- a. 0 30Hz 1 seconds maximum
- b. 30 OHz 1 seconds maximum
- 6) Drive carrier frequency should be set as low as possible Not above 4 kHz Not below 1 kHz.
 - a. When using a sinewave filter always check with filter manufacturer for Drive Carrier Frequency setting with a specific drive.

WARNING: ELECTRICAL TEST SHOULD ONLY BE CARRIED OUT BY A PERSON PROPERLY TRAINED AND LICENSED FOR THIS TYPE OF WORK

Winding Resistance Instructions:

- 1. Turn the POWER OFF.
- 2. Disconnect all electrical leads to the drop cable.
- 3. Set the scale selector on the ohmmeter to R x 1 (if you expect ohm values under 10) or R x 10 (for ohm values over 10).
- 4. Touch the leads of the ohmmeter to two motor leads: Single Phase Motors

Touching the leads of the ohmmeter to the black and yellow leads will measure the main winding's resistance for Grundfos 402 motors. The red and yellow leads will be the start winding's resistance.

Three Phase Motors

Touching the leads of the ohmmeter to any two leads will measure that winding's resistance. Repeat for all three possible lead combinations.

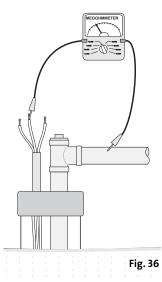
 Watch the ohmmeter scale and record this figure. Subtract the ohm resistance for the drop cable from the number. Compare the remaining figure with the one shown in the Motors section if the motor has been pulled.

windings are okay
winding may be
g to short
winding may be starting to open
ads may be connected
ectly, or have a break in
sulating jacket

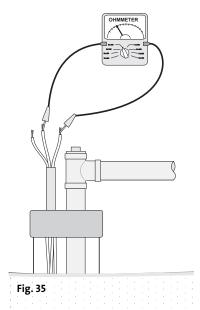
Insulation Resistance (lead-to-ground)

To check the insulation resistance of the drop cable, splice, and motor leads, a megohmmeter is required.

Instructions:


- 1. Turn the POWER OFF.
- 2. Disconnect all electrical leads to the drop cable.
- 3. Set the scale selector on the megohimmeter (Ohm meter / volt meter) to R x 100, touch its leads together, and adjust the indicator to zero.
- Touch the leads of the megohimmeter to each of the motor leads and to ground (i.e. L1 to ground; L2 to ground, etc.). The well casing, if made of steel, makes an excellent ground.

Evaluation: In general, any ohm value above 1,000,000 ohms indicates everything is OK. The following table gives more specifics.


Insulation Resistance

Insulation resistance in a submersible pumping system is a measure of the motors and/or cables ability to withstand normal voltage and surge voltages, without breakdown and failure. An "adequate" level of insulation resistance is not a constant value, but depends on the installation voltage and conditions, and whether the measured resistance is lowered by a specific weak point or by widely distributed conductance such as in cable insulation material itself. For this reason, values for acceptable resistance cannot be specific.

Insulation Resistance Measurements should be taken at the time of initial motor installation and periodically thereafter. In deep set submersible installations, measurements should be taken throughout the installation process, to detect potential cable insulation/connection damage before the unit is completely installed. Table 38 describes the condition of the insulation system for a submersible motor system of 600V or less based on megohmmeter (megger) readings.

Condition of Motor and Leads OHM Value **MEGOHM** Value A new motor (without drop cable) 20,000,000 (or more) 20.0 (or more) A used motor which can be reinstalled in the well 10,000,000 (or more) 10.0 (or more) MOTOR IN WELL. Ohm readings are for drop cable plus motor. **OHM** Value MEGOHM Value A new motor in the well. 2,000,000 (or more) 2.0 (or more) 500,000 - 20,000,000 A motor in the well in reasonably good condition. 0.5 - 2.0 A motor which may have been damaged by lightning or with damaged leads. 20,000 - 500,000 0.02 - 0.5 Do not pull the pump for this reason. A motor which definitely has been damaged or with damaged cable. The pump should be pulled and repairs made to the cable or the motor replaced. 10,000 - 20,000 0.01 - 0.02 The motor will not fail for this reason alone, but it will probably not operate for long A motor which has failed or with completely destroyed cable insulation. The less than 10,000 0 - 0.01 pump must be pulled and the cable repaired or the motor replaced.

Insulation Resistance (Megger Readings) & Motor Condition

Note: Table is applicable to motor nameplate voltage ratings of 600V or less.

Table 36

Insulation Resistance DC Test Voltages

Rated Motor AC Voltage	Recommended DC Test Voltage
600V and less	500 VDC
601V to 1000V	500 to1000 VDC
1001V and up	500 to 2500 VDC
	Table 37

Note: Values are based on copper conductors. Aluminum conductor resistance can be calculated by: Multiply the ohm values from the chart by 1.64.

Trouble Shooting And Maintenance Identifying conductors on single phase, 3-wire application:

- With power off, take ohm readings, leg to leg. Readings should correspond with motor specifications
- You will have one combination of wires with the highest Ohm reading, those two wires will be the Black and Red
- Measure the third wire (Yellow) with the other two, you will have a high and low
- Low measurement is the Black/Yellow combination
- High measurement is the Red/Yellow combination
- Confirm wire markings by: B/Y measurement added to R/Y measurement = B/R measurement

Copper Wire Resistance (DC Resistance in Ohm/100 ft. @ .75 °C / 33.35 °F Cond. Temp.)

Wir	Wire Size						
AWG	MCM	Ohms					
14	-	.324093					
12	-	.203820					
10	-	.128178					
8	-	.080628					
6	-	.050712					
4	-	.031862					
2	-	.02006					
1/0	-	.012648					
2/0	-	.010001					
3/0	-	.007931					
4/0	-	.006290					
-	250	.005324					
-	300	.004436					
-	350	.003803					
-	400	.003327					
-	500	.001774					
-	600	.002218					
-	700	.001901					
-	750	.001774					
-	1000	.001330					
L		Table 20					

Table 38

Supply Voltage Check (No load)

To check the supply voltage, use a voltmeter (or amprobe) with the power on.

Instructions

- 1. Set the voltmeter to the highest scale
- Remove the cover of the control box: BE CAREFUL -- POWER IS STILL BEING SUPPLIED TO THE CIRCUIT. Do not touch the voltmeter leads together while they are in contact with the power lines.
- 3. Touch the ends of the voltmeter leads as follows:

Single Phase Motors

Touch one voltmeter lead to each of the lines supplying power to the control (L1 and L2, or L1 and N for 115V circuits).

Three Phase Motors

Touch a voltmeter lead to the following:

- Power leads L1 and L2
- Power leads L2 and L3
 Power leads L2 and L3
 Power leads L3 and L1
 These tests should give a reading of full line voltage.
- Power leads I
- Two fuses
- Two contact points
- Two heaters

Evaluation

When the motor is under load, the voltage should be -10% and +6% of the nameplate voltage. Any variation larger than this can cause damage to the motor windings and should be noticeable as a high amp problem.

If The Motor Nameplate Reads:		Then the minimum and maximum voltage should be:				
		Minimum	Maximum			
115V	(single phase)	105 volts	121 volts			
208V	(single or three phase)	188 volts	220 volts			
230V	" "	210 volts	243 volts			
460V	(three phase)	414 volts	487 volts			
575V		518 volts	609 volts			

Any variations outside these specifications may indicate a poor electrical supply. The motor should not be operated under these conditions. Contact your power supplier to correct the problem or change the motor to one requiring the voltage you are receiving.

Operation and maintenance Service and installation should be performed by a qualified service representative.

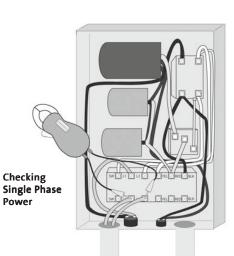
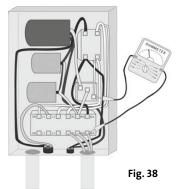


Fig. 37

- 1. Overload, if equipped, 1.5 Hp and up: (Push reset button to make sure contacts are closed).
- Ohmmeter setting: (Rx1).

capacitor prior to checking).

- Terminal connections: ohmmeter leads to overload terminals.
- Ohmmeter reading: should not be over 0.5 ohms.
- 2. Capacitor (disconnect one lead from each


- Ohmmeter setting: (Rx1000).
- Terminal connections: individual capacitor terminals.
- Ohmmeter reading: pointer should swing toward zero
- then drift back toward infinity.

Checking the Relay

(SINGLE-PHASE CONTROL BOXES ONLY)

To check the electrical condition of the relays on single phase control boxes, an ohmmeter is required.

Specific instructions for checking the relay differ from control box to control box. Refer to the inside cover of your control box.

Fig. 39

Overload Protection

To check the electrical condition of the thermal overloads, an ohmmeter is required.

Instructions:

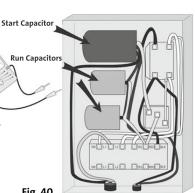
- 1. Turn the POWER OFF.
- 2. Set the scale selector on the ohmmeter to R x 1.
- 3. Touch one of the ohmmeter leads to an overload protector and one to terminal 1, then terminal 3. Repeat for each overload protector.

Evaluation:

If the ohm values are 0.5 ohms or less, the overload protectors should still be functional. If not, they should be replaced.

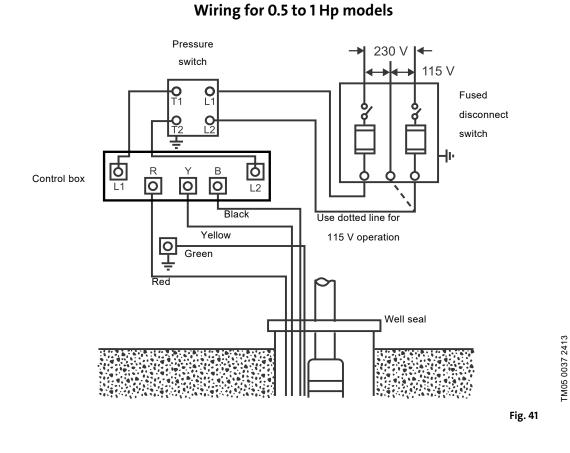
Capacitor Check

To check the condition of any capacitor on single phase motors, use an ohmmeter.


Instructions:

- 1. Turn the POWER OFF.
- 2. Disconnect the capacitor from the power source.
- 3. Discharge the capacitor by touching its leads together.
- 4. Set the scale selector on the ohmmeter to R x 100K.
- 5. Connect the leads of the ohmmeter to the black and orange wires of the capacitor.
- 6 Watch the ohmmeter scale
- 7. Disconnect one lead from the capacitor for approximately 30 seconds. The needle should return to the last reading taken.

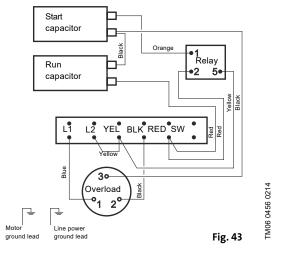
Evaluation


If the capacitor is OK, the needle should swing towards zero and then float back Fig. 40 towards infinity (∞). If the needle drops and remains at zero, the capacitor is probably shorted. If the needle remains at a high value, there is an open circuit.

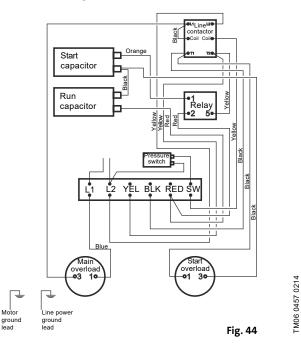
CAUTION: This test may indicate a good capacitor even though it may have lost some capacitance, making the motors run noisy or draw high amps. To safeguard against this, the capacitor can be checked with a capacitor meter.

- 3. Relay coil (disconnect lead from terminal 5). - Ohmmeter setting: (Rx1000).
 - Terminal connections: "5" and "2" on relay.
 - Ohmmeter reading: 4500-7000 ohms.
 - 4. Relay contact (disconnect lead from terminal 1).
 - Ohmmeter setting: (Rx1).
 - Terminal connections: "1" and "2" on relay.
 - Ohmmeter reading: should be zero.
 - 5. Magnetic contactor only, if equipped, DLX box only (disconnect 1 coil
 - Ohmmeter setting: (Rx1000).
 - Check coil resistance: 1000 1400 ohms.
 - Remove contact cover and inspect contacts.

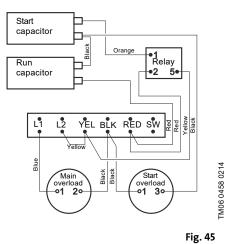
Single-Phase Wiring Diagrams for Grundfos 3-Wire Control Boxes

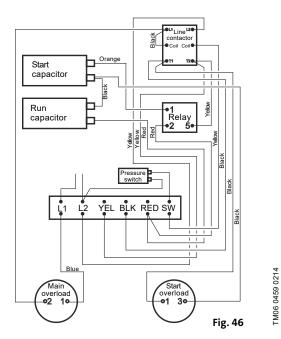


Orange ●**5** _{Relay} 2∙ Capacitor Blue Green Yellow 1• Black Yellow Red TM06 0454 0214 В Y R L2 L1 Line Run Common Start Fig. 42



3-Wire Control Box Wiring Diagrams - Single-Phase

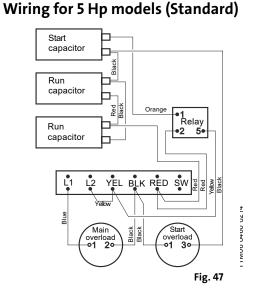

Wiring for 1.5 Hp models (Standard)

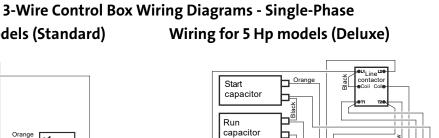

Wiring for 1.5 Hp models (Deluxe)

Wiring for 2 and 3 Hp models (Standard)

Wiring for 2 and 3 Hp models (Deluxe)

66


Run

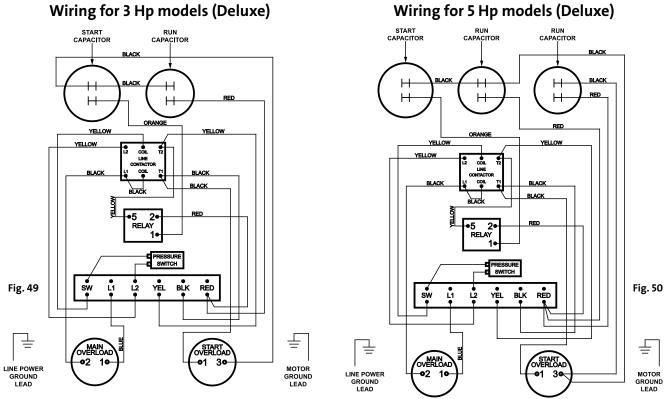

capacitor

Lį L2

Blue

Main overload

Red


rellow Red

Pressure switch

YEL BLK RED SW

WIRING DIAGRAMS BELOW & ON NEXT PAGE FOR NEW PRODUCT (TO BE RELEASED IN 2018)

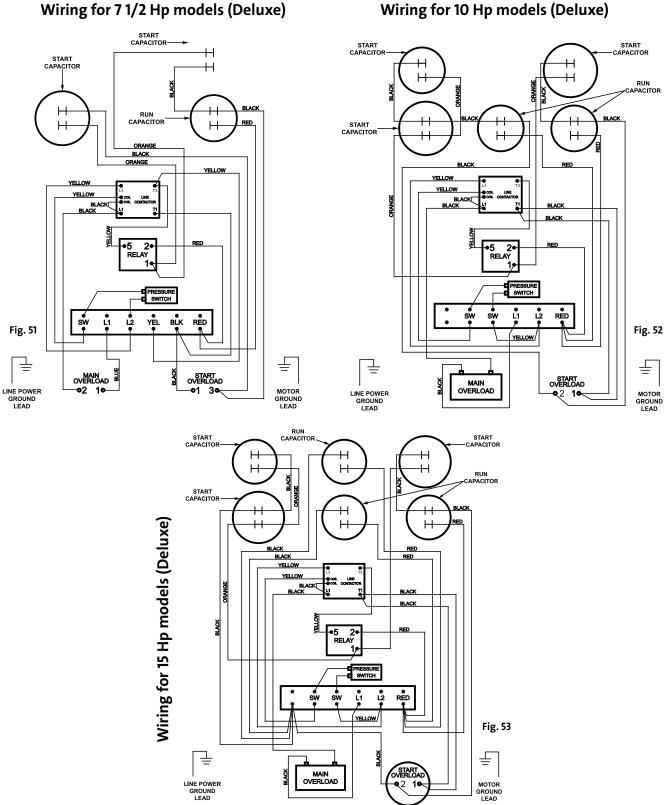
Start overload rello

Slack

Slack

Fig. 48

Black


•1 Relay •2 5•

Ē

3-Wire Control Box Wiring Diagrams - Single-Phase

Wiring for 10 Hp models (Deluxe)

Replacement Components for Grundfos Control Boxes: Deluxe, SA-SPM5 and SA-SPM6

HP	Туре	Volts	РН	Hz	Control Box Material Number (Sold In Singles)	Control Box Material Number (10-Pack Bundles)	Material Number For Reference	Start Capacitor Material Number	Run Capacitor Material Number	Relay Material Number	Main Circuit Thermal Overload Material Number	Start Circuit Thermal Overload Material Number
1/2	STD	115	1	60	-	98821580	98315240	98315282	-	98673361	-	-
1/2	STD	230	1	60	-	98821631	98315251	98315278	-	98315271	-	-
3/4	STD	230	1	60	-	98821632	98315252	98315279	-	98315271	-	-
1	STD	230	1	60	-	98821633	98315253	98315280	-	98315271	-	-
1-1/2	STD	230	1	60	98315254	-	-	98315280	98315274	98315271	91126321	91126324
1-1/2	DLX	230	1	60	98315255	-	-	98315280	98315274	98315271	91126321	91126324
2	STD	230	1	60	98315256	-	-	98315280	98315275	98315271	91126321	91126324
2	DLX	230	1	60	98315257	-	-	98315280	98315275	98315271	91126321	91126324
3	STD	230	1	60	98315258	-	-	98315281	98315277	98315272	91126322	91126325
3	DLX	230	1	60	98315259	-	-	98315281	98315277	98315272	91126322	91126325
5	STD	230	1	60	98315260	-	-	98315283	98315276	98315272	91126323	91126326
5	DLX	230	1	60	98315261	-	-	98315283	98315276	98315272	91126323	91126326
												Table 39

DLX: Deluxe Control Box (DLX) indicates magnetic starter included in addition to Standard Control Box (STD). SA-SPM5 and SA-SPM6 relays and capacitors are dimensionally different and are not interchangeable. Main Circuit and Starter Circuit Thermal Overloads fit both SA-SPM5 and SA-SPM6. They are interchangeable.

69

Applications

SQE Pump/Motor

The SQE, when coupled with a CU301 control, is the only constant pressure pump on the market fully equipped with built-in electronic controls which allow for advanced computer controlled performance and state of the art protection features including sophisticated diagnostics.

Main Applications: Domestic water supply, irrigation, pressure and water boosting

Features:

Soft Start - Prevents water hammer and electrical stress on the service main and the motor

High Starting Torque – even at low supply, the SQE delivers a reliable water supply

Over and under voltage protection – protects the motor from unstable voltage supply by reducing speed or stopping the motor

Dry Run Protection – stops and prevents the pump from damage Please refer to the Grundfos SQE Data Booklet and Installation & Operating instructions for more detail.

SQE

It is safe to operate the SQE with a generator. The generator must be sized 50% above the P1 (Input power) values of the pump.

Motor (HP)	Minimum Generator Size (Watts)	Recommended Generator Output (Watts)
1/2	1200	1500
3/4	1900	2500
1	2600	3200
1-1/2	2800	3500

Table 40

SQE Fuse and Cable Size Recommend	ations
-----------------------------------	--------

N	Aotor Ratir	ng	Copper Wire Size (AWG)						
Volts	Нр	Amps	14	12	10	8	6	4	2
115	1/2	12	140	220	360	550	880	1390	2260
	1/2	5.2	640	1000	1660	2250	4060	-	-
230	3/4	8.4	400	620	1030	1580	2510	3970	-
250	1	11.2	300	460	770	1190	1890	2980	4850
	1.5	12	280	430	720	1110	1760	2780	4530

Note - Gray highlighted values do not apply when using a CU301 as its maximum recommended cable length is 650 ft.

Generator Sizing:

Generator sizing is based on the following formula.

1. Input Max Voltage calculation = Highest Rated Voltage +/-10%.

Example: 200-240V = 240 x 1.10 = 264 Input Max Voltage

2. Drive KVA Rating calculation = Drive Input Max Voltage x Drive Output Max Current (Amps).

Example: 264 x 10.6 = 2798 Drive KVA Rating

3. Factor to Generator = Drive KVA Rating x 2.5 Factor = Minimum Generator Size.

Example: 2798 Drive KVA Rating x 2.5 Factor = 7000 Watt (7 kW) Generator

CU331SP

The CU331SP can be supported by a generator which must be electronically controlled/stabilized.

Motor (Hp)	CU331SP Rated Input Voltage	CU331SP Input Max Voltage (V)	CU331SP Output Max Current (I)	Drive KVA Rating	Factor x 2.5	Minimum Generator Size (Rounded) (W}	Minimum Generator Size (kW}
2			10.6	2798		7000	7.0
3	200-240	264	12.5	3300	x 2.5	8500	8.5
5	5		24.2	6389		1600	16.0
							Table 42

CU331 SP Control

CUE and CU331SP Wire Sizing

Cable Type	Maximum Cable Length
Screen motor cable	500 Ft. (152 m)
Unscreened motor cable	1000 Ft. (305 m)
Signal cable	1000 Ft. (305 m)
	Table 43

	Fuse	es and Cor	nductors	UL Fuses and Conductors				
НР	Max Fuse Size Amps	Fuse Type	Max Conductor (AWG)	Max Conductor (mm²)	ΗΡ	Max Fuse Size Amps	Bussman RK1	Max Conductor (AWG)
2	40	gG	7	10	2	40	KTN-R40	7
3	40	gG	7	10	3	40	KTN-R40	7
5	80	gG	7	10	5	80	KTN-R80	7

Table 44

ELECTRONICS - CONSTANT PRESSURE CUE CONSTANT PRESSURE CONTROL

Grundfos CUE (Variable Frequency Drive (VFD):

A comprehensive series of wall mounted frequency converters with E-Pump functionality and user interface

Main Applications:

Industry, Building services, Municipal Water Supply and Irrigation application.

Features:

Comprehensive range .75Hp - 300 Hp

Five different power supplies -1 Phase, 200-240 V, 50/60 HZ (1.5 -7.5 Hp)

Control Modes :

Constant Pressure With/Without stop function Constant Differential Pressure Proportional Pressure Constant Level With/Without stop function Constant Temperature Dry Run Protection Duty/Standby Mechanical Bearing Supervision Smart Interface Multiple Input / Output options Multiple Network connection options

CUE Control

Motor (Hp)	Phase (PH)	CUE Rated Input Voltage (V)	CUE Max Input Voltage (V)	CUE Max Output Current (A)	Drive KVA Rating	x 2.5	Minimum Generator Size (Rounded) (W}	Minimum Generator Size (kW}
7-1/2	1	200-240	264	30.8	8131	x 2.5	20400	20.4
7-1/2	3	200-240	264	30.8	8131	x 2.5	20400	20.4
10	3	200-240	264	46.2	12197	x 2.5	30500	30.5
15	3	200-240	264	59.4	15682	x 2.5	39200	39.2
20	3	200-240	264	74.8	19747	x 2.5	49400	49.4
25	3	200-240	264	88.0	23232	x 2.5	58100	58.1
30	3	200-240	264	115.0	30360	x 2.5	75900	75.9
7-1/2	3	380-500	550	14.5	7975	x 2.5	20000	20.0
10	3	380-500	550	21.0	11550	x 2.5	28900	28.9
15	3	380-500	550	27.0	14850	x 2.5	37200	37.2
20	3	380-500	550	34.0	18700	x 2.5	46800	46.8
30	3	380-500	550	40.0	22000	x 2.5	55000	55.0
40	3	380-500	550	52.0	28600	x 2.5	71500	71.5
50	3	380-500	550	65.0	35750	x 2.5	89400	89.4
60	3	380-500	550	80.0	44000	x 2.5	110000	110.0
75	3	380-500	550	105.0	57750	x 2.5	144400	144.4
100	3	380-500	550	130.0	71500	x 2.5	178800	178.8
125	3	380-500	550	160.0	88000	x 2.5	220000	220.0
150	3	380-500	550	190.0	104500	x 2.5	261300	261.3
200	3	380-500	550	240.0	132000	x 2.5	330000	330.0
250	3	380-500	550	302.0	166100	x 2.5	415300	415.3

Table 45

Note - For proper selection of fuses and maximum wire sizing, review the CUE Installation and Operating Manual starting on **page 41**.

SQE with CU301, Submersible Motors with CUE or CU331SP

Diaphragm tank

The stop function requires a diaphragm tank of a certain minimum size. The tank must be installed as close as possible after the pump and the precharge pressure must be 0.7 x actual shut off pressure set point.

See pressure tank manufacture for more specifications, installation and service recommendations.

Constant Pressure Systems - Pressure Tank Sizing

CU331SP and CUE Pressure Tank Sizing

The stop function requires a diaphragm tank of a certain minimum size. The tank must be installed as close as possible after the pump and the precharge pressure must be 0.7 x actual setpoint. Recommended diaphragm tank size:

Rated Flow Of Pump GPM (m³/h)	Minimum Diaphragm Tank Size Gallons (Liters)
0-26 (0-6)	2 (8)
27-105 (7-24)	4.4 (18)
106-176 (25-40)	14 (50)
177-308 (41-70)	34 (120)
309-440 (71-100)	62 (180)

Table 46

Note - If the diaphram tank sized above is installed in the system, the factory setting of ΔH is the correct setting. If the tank installed is too small, the pump will start and stop too often. This can be remedied by in creasing ΔH .

Fixed Speed Standard Systems

- SQ and SP on a submersible motor with pressure switch, requires minimum 1 minute pump run time.
- See pressure tank manufacturer proper sizing of tank capacity/draw down.

Pressure Tanks serve several functions in pressure controlled water systems.

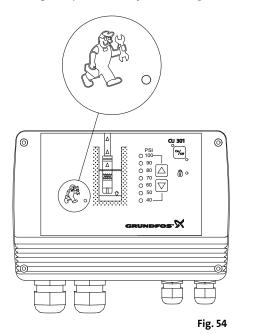
Required:

Contain a cushion of air at properly set psi to work with the pressure switch or controller to turn the pump on and off efficiently. Without the cushion of air in the tank, the system/pump will rapid cycle on and off shorting the life of the motor and consume large amounts of electrical power.

Draw Down is the amount of gallons stored in the pressure tank and used between pump cycles. The general rule is to size the tank to the GPM of the pump so that once the pump turns on, it will run one minute to fill the tank before shut off. This proper sizing keeps the pump from over cycling, shortening the life of the motor and reducing the amount of electrical power consumption. Two or three pressure tanks can be installed in a system to add up to the recommended size tank capacity.

Benefits:

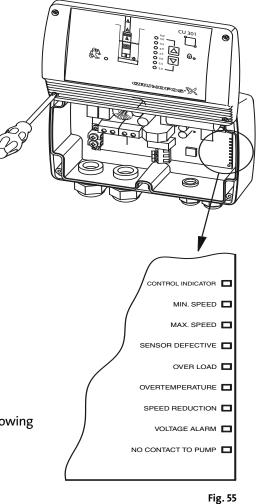
Pressure tanks will absorb water hammer so not to damage the system components and help to reduce water hammer noise. Fewer start stop cycles extend motor life and reduce electrical power cost.



Before starting any work on the CU 301, make sure that the electricity supply has been switched off and that it cannot be accidentally switched on. A number of LEDs are mounted on the supply board inside the CU 301, see CU 301 owners manual, section 4. Position of LEDs.

LEDs and alarm texts on the supply board

The CU 301 continuously receives operating data from the pump. In case of an alarm, the service indicator light is permanently on, **see Fig. 54**.



The service indicator light will be permanently on if one of the following alarm situations occurs:

TM02 4173 1606

- Sensor defective
- Overload
- Overtemperature
- Speed reduction
- Voltage alarm
- No contact to pump

To identify the cause of the service alarm, it is necessary to remove the front cover from the CU 301 or use the R100 or Grundfos GO. Fit the front cover as shown in **Fig. 55** to avoid disconnecting the multi-core cable.

be think innovate

Electronically controlled systems, at times, encounter problems. Grundfos CU301 controllers are equipped with diagnostic features to aid in troubleshooting the application as well as the electronics. Each controller has a series of Fault/Warning lights or codes that provide the troubleshooter with key indicators of the system condition. Refer to the Installation and Operating Manuals for additional information.

Alarm Indication	Description	
No Fault Indication	No alarms are register by the CU 301	
No Contact to Pump	No communication between the CU 301 and the pump.	
Overvoltage	The supply voltage exceeds the limit value.	
Under Voltage	The supply voltage us below the limit value.	
Dry Running	The dry-running protection of the pump has been activated.	
Over Temperature	emperature the temperature of the motor exceeds the limit value.	
Overload	The current consumption of the motor exceeds the limit value.	
	The sensor signal has fallen outside the measuring range set. The	
Sensor Defective	sensor signal of a 4 -20mA or 2-10V sensor is below 2 mA or 1V	
	respectively.	
	Table 47	

SQE/CU301 Fault Indicators

Fa	ult	Ро	ssible cause	Remedy		
1.	No light in the front cover.	a)	The ribbon cable con- nection is loose or de- fective.			
•		The CU 301, the pressure sensor or the pump is defective.	 Check That the control indicator LED is flashing. If not, the CU 301 is defective. That the system pressure is 7 psi below the pressure setting. If so, the pump is supposed to start. Open a tap to be sure. If the pump starts, the system is probably OK. The system pressure can be read on the pressure gauge. Refer to fault 13 to troubleshoot the pressure sensor. If the pump has not started yet, proceed as follows: Press the On/Off button for 5 seconds. If the pump starts, the CU 301 or the sensor may be defective. Note: The pressure is not controlled and may ris			
				to a high level. Press the on/off button to off.		
3.	The pressure is not constant.	a)	The pump is not of the correct type or the precharge pressure of the diaphragm tank is incorrect.	 Check That the LED for Max. speed or Min. speed is on. If so, this indicates that the pump has reached a limit. See CU 301 owners manual, section 1.3 System sizing. Replace the pump, if necessary. 		
				• The precharge pressure of the diaphragm tank. Note: Remember to stop and drain the system before the tank precharge pressure is checked.		
				 To make sure the diaphragm tank is the 2 gal. size. Whether the sensor is positioned far away from the tap. If so, the pressure variations may be caused by friction losses, see CU 301 owners manual, section 1.5 <i>Positioning the pressure sensor.</i> 		
		b)	No contact between SQE pump and CU 301 control unit.	Check that the LED for "No contact to pump" is on. If so, go to fault no. 14.		
4.	The pump is running continuously.	a)	The pump cannot de- liver the set pressure. The CU 301 or the sensor is defective.	 Try to lower the pressure setting, see CU 301 owners manual, section <i>1.3 System sizing</i>. Note that the pump may run for about 15 to 20 seconds before it stops. Check that the control indicator LED is flashing. 		
				Check that the pipe end of the sensor is not blocked If so, remove the blockage.		
				• Try to stop the pump by means of the On/Off button. If this is not possible, the CU 301 is defective. Replace the CU 301.		
				Refer to fault 13 to troubleshoot the pressure sensor		

be think innovate

 The CU 301 indi- cates "No contact to pump". 		a)	The motor is not an MSE 3.	If the pump has already worked satisfactorily with a CU 301 or a CU 300, the motor can be expected to be an MSE 3. There is no technical way of determining the motor type. The only way is to read the nameplate engraved in the motor sleeve.
		b)	The pump cable is longer than 650 feet.	Reduce the length of the pump cable.
		c)	Cable breakage.	Switch off the main power supply to the CU 301. Connect motor leads directly to the main power supply. Switch on the main power supply again. The pump is now connected direct to the main power supply without interfer-ence from the CU 301. Does the motor start? Yes: The cable is OK. Go to point d). No: Switch off the main power supply again. Remove cable and cable plug from the motor and ohm out cable in-cluding plug. Is the cable OK? Yes: The motor is defective. No: Replace the cable.
		d)	Cross communica-	If another CU 301 is installed:
			tion with adjacent CU 301.	 Insure each unit has a unique number assigned. See C 301 owners manual, section 5.3.10 Number.
				 If pump cables run parallel to each other, physically separate them by 12-14 inches or rewire using shielded cable.
		e)	The CU 301 commu- nication part is defec- tive.	Are the three CU 301 supply board LEDs in pos. 2, 3 and 4 on and is the control indicator LED flashing? See CU 301 owners manual, section <i>4. Position of LEDs.</i> Yes: • The main power supply is OK.
				 Assign the system a new number.
				If this does not work, the CU 301 or the motor commu- nication part is defective. Replace the CU 301 and give the new system a num- ber between 1 and 64 in order to obtain correspon- dence between the numbering of the SQE pump and the CU 301. Note: Two systems on the same main power supply must not have the same number! Is the LED "No contact to pump" of the new CU 301 also on?
				Yes: The CU 301 is OK. Go to point f). No: The CU 301 which was removed is defective.
		f)	The MSE 3 motor communication part is defective.	As a consequence of the above-mentioned checks, replace the MSE 3 motor.
6.	Even AFTER replace- ment, the CU 301 in- dicates "No contact to pump".	a)	Numbering of SQE pump and CU 301 is different.	If an SQE/CU 301 system has been given a number, this number is stored in both the SQE and CU 301. A new CU 301 or SQE may not have a number corre- sponding to the number stored in the previous unit. Therefore, "No contact to pump" is indicated even if there is no fault. Give a new system the number between 1 and 64 in order to obtain correspondence between the numbering of the SQE pump and the CU 301. Note: Two systems on the same main power supply must not have the same number!

7. The CU 301 indicates "Overvoltage" or "Undervoltage".	a)	The supply voltage is unstable or outside the voltage range specified for the in- stalled motor type.	 Check - possibly over a period of time - that the supply voltage is according to the values below. Motor type 0.5 hp = 198-315 V Motor type 0.75 hp = 198-315 V Motor type 1.0 hp = 207-315 V Motor type 1.5 hp = 207-315 V. Voltage range for 100-115 V motors: Motor type 0.5 hp = 90-180 V. Note: As the voltage is detected at the motor, allow for the voltage drop in the pump cable.
 The CU 301 indicates "Dry running". 	sp		is lower than the dry-running stop setting and the motor of programmed maximum speed, for an accumulated ump will be stopped.
	a)	The pump perfor- mance is too high for the well yield.	Replace the pump with a smaller pump or reduce the pump performance, by lowering maximum speed, or reducing set pressure.
	b)	The well screen is blocked.	Check the well capacity and restore water supply to the well.
	c)	The dry-running stop setting is incorrect.	Check and correct the setting, see CU 301 owners manual, section <i>5.3.5 Dry-running stop</i> .
 The CU 301 indicates "Speed reduction" and "Undervoltage". 	su		ed so as to maintain a reduced performance. When the that it can no longer supply the necessary current to pump will be stopped.
	a)	The supply voltage is unstable or lower than the voltage range specified for the installed motor type.	Restore correct supply voltage.
	b)	The pump is not of the correct type.	Install correct pump type.
	c)	The voltage drop in the pump cable is too great.	Replace the pump cable with lower gauge wires.
10. The CU 301 indicates	Sp	eed reduction is activat	ed so as to maintain a reduced performance.
"Speed reduction" and "Overload".	a)	The pump is worn or blocked.	The pump must be serviced.
	b)	The pump is too large	Replace pump with proper size pump.
11. The CU 301 indicates "Overtemperature".			the motor is sensing a temperature above the values
"Overtemperature".	sta		n, factory settings.
			Restore correct cooling of the motor. The flow velocity past the motor should be at least 0.5 ft/s.
	a)	Insufficient cooling of the motor.	Restore correct cooling of the motor. The flow velocity

(continued on the following page)

13. The CU 301 indi- cates "Sensor defec- tive".	a)	The pressure sensor is defective.	Check that the sensor is wired correctly. Check that the R100 or GO Remote setting of the sensor is correct, see CU 301 owners manual, section <i>5.3.1</i> . If the sensor type is 4-20 mA, measure the DC voltage across the sensor input terminals. If the DC voltage measured at the sensor or wiring is defective. Refer to CU 301 owners manual, section <i>9.</i> , page 28, for additional troubleshooting assistance. Replace defective parts. Are the LED "Sensor defective" and the LED, pos. 1, on? See CU 301 owners manual,section <i>4. Position of LEDs.</i> Yes: The total load of 24 VDC from terminal 5 is above 100 mA. Disconnect the sensor in order to determine if it is de- fective. Replace defective sensor. No: The load is OK, but the CU 301 sensor input may be defective.
14. The pump is operat- ing on/off.	a)	No communication.	Check that the LED "No contact to pump" is on. If so, the control unit CU 301 starts and stops the pump, based on the sensor signal only. The CU 301 has to be reset every 250 stops. Refer to fault no. 5 for remedy.
15. Excess pressure, for a short moment, at start of consumption.	a)	Cut-in speed is too high.	Reduce the cut-in speed, see CU 301 owners manual, section 5.3.7 <i>Cut-in speed</i> .

SP Pumps with CU 331SP / CUE Variable Frequency Drive (VFD)

Ind	licator lig	hts		
Off Orange	On Green	Alarm Red	Condition/cause	Remedy
Off	Off	Off	The display of the CUE is off	
			 Fault in the power supply of the control panel. 	Check the supply voltage to the CUE.
			 The control circuit power supply is overloaded. 	 Pull all signal terminals out of the control board. If the control panel lights up: The fault is in the control circuit. Check the control circuit for short-circuits or faulty connections before reconnecting the signal terminals. If the control panel does not light up: Contact Grundfos Service.
On Off Off			The CUE has been switched off with the on/o	off button
			 The CUE has been switched off with the on/off button. 	Switch on the CUE with the on/off button.
On	Off	On	The CUE has been switched off with the on/e1. There is an alarm indication in the display of the CUE.	 bit button and is in alarm state. i + Alarm cause and remedy, see CUE Service nstructions, section 2.5 Fault finding by means of alarm and warning codes. 3/4+ Reset the alarm. (If it is a locked alarm, the mains supply must be switched off before the CUE can be restarted.) ½+ witch on the CUE again with the on/off button.
Off	Off	On	The CUE has stopped due to an alarm1. An alarm has caused the CUE to stop.	 means of alarm and warning codes. structions, section 2.5 Fault finding by means of alarm and warning codes. +¾Reset the alarm. (If it is a locked alarm, the mains supply must be switched off before the CUE can be restarted.)
Off	On	Off	The CUE is in operation, i.e. the pump connection (no alarm) 1. Stopped by stop function.	 Acted is running or has been stopped by a stop No: Check the settings of the stop function. Yes: Normal operational stop. The CUE will restart when the stop function has ceased. a) If the markers for actual setpoint and actual
			2. External setpoint has been activated.	 value in display 1.1, Setpoint, are level, the pump has been stopped according to its settings b) If external setpoint = 0 % in display 1.2, Operating mode, the CUE will not detect an inpusignal. Check the voltage on terminal 53. If no voltage is measured, the fault is in the external control circuit. If the voltage measured is greater than 0 V, the CUE is defective. Contact Grundfos Service. c) If external setpoint > 0 % in display 1.2, Operating mode: Check the voltage on terminal 53: If the measured voltage does not correspond to the external setpoint in display 1.2, the CUE is defective; contact Grundfos Service.

Inc	dicator ligh	nts					
Off Orange	On Green	Alarm Red	Condition/cause	Remedy			
Off	Flashing	Off	The CUE is ready for operation, but has bee or via the bus	n stopped by the user, an external start/stop signa			
			 The CUE has been stopped in display 1.2, Operating mode. 	Restart the CUE by selecting another operating mode: <i>Min., Max.</i> or <i>Normal.</i>			
			 The CUE has been stopped by an external start/stop signal, or there is a fault in the external control circuit. 	Check that the CUE receives a start signal on the external start/stop input. (Terminals 18 and 20 must be connected).			
			3. The CUE has been stopped by a signal on digital input DI 2, 3 or 4.	Check whether the inputs have been set to Ext. fault Flow contact or Dry running (displays 3.9 to 3.11).			
			4. The CUE has been stopped via the bus.	Check display 2.2, Operating mode. If the operating mode is "Stop", and is from "Bus", the CUE has detected a stop signal via the "Bus". Contact the system integrator or Grundfos Service if the bus does not send a stop signal.			
Off	On	On	The CUE in operation, but there is an unreset warning/alarm				
			 There is or has been an alarm or a warning that did not cause a stop. 	See the alarm text in the display.			
Off	Flashing	On	The CUE is ready for operation, but has bee or via the bus, and there is an unreset warn	n stopped by the user, an external start/stop signa ing/alarm			
			 The CUE has been stopped in display 1.2, Operating mode. 	Restart the CUE by selecting another operating mode: <i>Min., Max.</i> or <i>Normal.</i>			
			2. The CUE has been stopped by an external start/stop signal, or there is a fault in the external control circuit.	Check that the CUE receives a start signal on the external start/stop input. (Terminals 18 and 20 must be connected).			
			3. The CUE has been stopped by a signal on digital input DI 2, 3 or 4.	Check whether the inputs have been set to Ext. fault Flow contact or Dry running (displays 3.9 to 3.11).			
			4. The CUE has been stopped via the bus.	Check display 2.2, Operating mode. If the operating mode is "Stop", and is from "Bus", the CUE has detected a stop signal via the "Bus". Contact the system integrator or Grundfos Service if the bus does not send a stop signal.			
			5. There is or has been an alarm or a warning that did not cause a stop.	See the alarm text in the display.			

2.5.1 Alarm and warning list

The following list gives you an overview of the possible alarms and warnings and a description of the causes and suggestions for remedy.

These abbreviations are used in the column "Alarm":

W: Warning.

A: Alarm.

L: Locked alarm: The alarm cannot be reset until the main power supply has been switched off.

1): The action in case of alarm depends on the pump type.

Alarm Fault indication		Alarm	Alarm action	Reset
Cause/explanation	Remedy			
1/14 Too high leakage current		W L	Stop	Man.
 There is a discharge or current unbalance: between the CUE output phases or from phases to earth in the cable to the motor in the motor There may be a great unbalance between the motor winding resistances. The CUE is faulty. 	Switch off the CUE, and 98. a) Meg these parts: • the cable betwee • the motor. b) Contact Grundfos S	en the CUE and		nals 96, 97 ar
2/4 Phase failure (only three-phase CUE)		А	Stop	Aut.
Missing phase, or the supply voltage unbalance is too nigh.	Re-establish the voltage If the fuses blow again, Service.			
3/2004 External fault		А	Stop	Man.
 DI 3 (see display 3.10) DI 4 (see display 3.11) s set to "External fault", and the input has been or is still closed. 	 Check if the digital input If the input is closed circuit. 		•	
16/1 Other fault		W	-	Aut.
Dverload of the 10 V voltage supply to the external control circuit. The voltage between terminals 50 and 39 is less than 10 V.	 Pull the terminal block for If the warning disapped the external setpoin If the warning does 	pears, the fault t.	is overload in the c	ontrol circuit
16/- Other fault		W A	-	Aut./man.
Other alarms with an alarm code starting at 16/.	Contact Grundfos Servio	ce.		
30/2005 Replace motor bearings		W	-	Man.
The pump has reached the factory-set number of operating hours, and the bearings have been elubricated the maximum number of times.	Replace the bearings, a bearings.	nd confirm the r	eplacement in displa	ay 3.20, Moto
32/5 Overvoltage		W	-	Aut.
The supply voltage has caused the intermediate circuit voltage (DC) to be higher than the warning limit of the	 Check the supply vo Check the mains su If the main power su 	pply. (See also ipply is okay, c	32/7.) ontact Grundfos Se	
control system. The CUE is still active.		Alarm/warni	5	
	Voltage supply:	3 x 200-240 V	3 x 380-480 V	3 x 525-600
	Voltage warning high:	390 VDC	810 VDC	943 VDC

ELECTRONICS PRODUCTS MAINTENANCE AND TROUBLE SHOOTING - CU 331SP / CUE

Alarm code	Fault indication		Alarm	Alarm action	Reset	
Cause/exp	lanation	Remedy				
32/7	Overvoltage		А	Stop	Aut.	
The supply	voltage has caused the intermediate circuit	 Check the supply v Check the main point If the main power s 	ower supply. (See	also 32/5.)		
	c) to be higher than the alarm limit of the		Alarm/warnin			
control syst	em. The CUE will stop after a while.	Voltage supply:	3 x 200-240 V	3 x 380-480 V	3 x 525-600	
		Overvoltage:	410 VDC	855 VDC	975 VDC	
40/6	Lindenveltage	Overvoitage.	W	000 400		
40/0	Undervoltage	 Increase the suppl CUE nameplate. 		- rescribed level ad	Aut. cording to the	
	ediate circuit voltage (DC) is lower than the	Check the main poIf the main power s			ervice.	
varning lim active.	it of the control system. The CUE is still		Alarm/warnin		011100.	
icuve.		Voltago supply:		-	2 x 525 600 1	
		Voltage supply: Voltage warning low:	3 x 200-240 V 205 VDC	3 x 380-480 V 410 VDC	3 x 525-600 585 VDC	
			205 VDC			
40/8	Undervoltage		A	Stop	Aut.	
The interm	dista sirauit voltago (DC) is lower than the	 Increase the suppl CUE nameplate. Check the main power of If the main power of 	ower supply. (See	also 40/6.)	Ū	
	ediate circuit voltage (DC) is lower than the of the control system.					
			Alarm/warnin	-		
		Voltage supply:	3 x 200-240 V	3 x 380-480 V	3 x 525-600	
		Undervoltage:	185 VDC W	373 VDC	532 VDC	
48/9	Overload		A	Stop	Aut.	
s more that current stat First a warr	stopping due to an overload. (The current n 10 % higher than the maximum output ed on the nameplate.) hing is given, which is followed by an alarm ad exists for more than 1 minute.	 Check the motor ci Check the pump. 	urrent according t	o the CUE name	olate.	
48/10	Overload		А	Stop	Aut.	
	nic thermal protection of the CUE has at the motor is persistently overloaded.	 Check the motor c Check the pump. Go through the sta 	0	o the CUE name	olate.	
48/16	Overload		L	Stop	Mar	
There is a s notor.	short-circuit in the motor cable, filter or	Switch off the CUE, an and 98, or high-voltage		or cable from term	inals 96, 97	
49/13	Overload	, , , ,	W	Stop	Aut.	
is more tha current stat First a warr	stopping due to an overload. (The current n 10 % higher than the maximum output ed on the nameplate.) ing is given, which is followed by an alarm ad exists for more than 1 minute.	Switch off the CUE, an the motor size fits the 0	d check that the m	notor shaft can be	turned and tha	
55/12	Overload		W	Stop	Aut.	
	ation. The CUE is overloaded and limits othe motor. The pump may therefore not	 Check the motor c Check the pump. Go through the sta 	-	o the CUE name		
55/59	Overload	co anough the sta	W		Aut.	
	overloaded, but the alarm limit has not yet	 Check the motor ci Check the pump. Go through the sta in display 6/16 of ti 	urrent according t irt-up guide, as the	e current is highe	olate.	

Alarm code	Fault indication	Alarm	Alarm action	Reset
Cause/exp	lanation	Remedy		
57/93	Dry running	А	Stop	Aut.
 DI 2 (se DI 3 (se DI 4 (se 	digital inputs ee display 3.9) ee display 3.10) ee display 3.11) y running", and the input has been or is still	 Check if the digital input set to "Dry run If the input is closed, reset the sign sensor. If the input is open, contact Grundf 	al on the external dr	
64/-	Too high CUE temperature	WA	Stop	Aut.
The interna	I temperature of the CUE is too high. Fault			
 The am cooling. The ins the CUE 	bient temperature is higher than 45 °C (1 tallation was not carried out according to E installation and operating instructions.	13 °F). Lower the ambient temperature, Check the installation of the CUE.		riding force
• The fan 77/2009	is dirty or defective. Duty/standby communication error	Clean the fan, or contact Grundfos Serv		Aut.
standby fur	ation between the two pumps set to duty/ action has been interrupted. nps are not set correctly.	Check the setting according to the CUE instructions.	installation and oper	ating
	tage supply to the standby pump has terrupted.	Re-establish the voltage supply.		
 The cor disconn 	nmunication cable has been ected.	Check the communication cable.		
89/2011	Sensor 1 outside range	А	1)	Aut.
The analog values for r Type: 4-20 Type: 2-10	erminal 54): input signal has fallen below these control nore than 500 ms: Millisecond (ms) mA: Alarm under 2 mA (reset over 3 mA). V: Alarm under 1 V (reset over 1.5 V). D-20 mA and 0-10 V are not monitored. art-up:			
	sor is connected.	Connect a sensor according to section operating instructions.	6.3 of the CUE install	ation and
2. Contac incorre	t A54 for selection of signal type is set ctly.	Set the contact correctly according to se and operating instructions.	ection 6.3.5 of the CU	IE installatio
	3.15 is set incorrectly for the sensor.	Correct the sensor setting.		
4. The sei	nsor has been connected incorrectly.	Connect the sensor correctly according and operating instructions.	to section 6.3 of the C	CUE installa
Fault after	-			
5. Incorre	ct voltage supply to sensor.	Check that there are 24 ± 1 VDC betwe		55:
		 If the voltage is not okay, contact G If the voltage is okay, check if there terminals 54 and 55. If yes, contact lf the cable is missing, or the sensor is of the sens	e is minimum 4 mA o t Grundfos Service.	

Alarm code Fault ir	ndication		Alarm	Alarm action	Reset
Cause/explanation		Remedy			
91/2013 Temper	ature sensor 1 outside range		1)	1)	Aut.
MCB 114 sensor inp	nsor connected to terminal 5 in the ut module measures a value F) or over 200 °C (392 °F).				
1. The sensor has	been connected incorrectly.	Check the connection ac operating instructions.	ccording to sect	tion 6.5 of the CUE in	stallation and
2. The supply to th	e sensor is incorrect.	 Check that there are 24 If the voltage is not of If the voltage is okay below. 	okay, contact G	Frundfos Service.	
3. The sensor is de	efective.	 Measure the sensor resi Type Pt100: If the resistance is left of the sensor is defective of the sensor is (68 °F), the resistance is not defected. 	ess than 80 Oh 40 Ohm (corre and must be re ess than 800 C an 1773 Ohm is defective an ce must be 10	om (corresponding to esponding to 200 °C placed. At 20 °C, the ohm (corresponding to (corresponding to 20 d must be replaced. 77 Ohm.	or 392 °F), th e resistance to –50 °C or 00 °C or
93/2012 Sensor	2 outside range		1)	-	Aut.
under the control val	inal 2 of MCB 114) is or has been ue: m under 2 mA (reset over 3 mA).				
Fault at start-up:					
1. The CUE menu sensor type insta	setting does not match the alled.	Check the setting in disp	lay 3.16, Sens	or 2.	
	been connected incorrectly.	Check the connection ac operating instructions.	cording to sect	ion 6.5.2 of the CUE	installation and
Fault after start-up:		, ,			
3. Incorrect voltage		 Check that there are 24 If the voltage is not of If the voltage is okay terminals 2 and 3. If 	okay, contact Q v, check if there	Grundfos Service. e is minimum 4 mA b	
4. Sensor or senso	or cable defective.	If the cable is missing, or	r the sensor is	defective, contact Gru	undfos Service

Alarm code	Fault indication		Alarm	Alarm action	Reset		
Cause/exp	lanation	Remedy					
96/2010	Setpoint signal outside range		А	1)	Aut.		
External setpoint (terminal 53): The external setpoint has fallen below these control values for more than 500 ms: Type: 4-20 mA: Alarm under 2 mA (reset over 3 mA). Type: 2-10 V: Alarm below 1 V (reset over 1.5 V). The types 0-20 mA and 0-10 V are not monitored. Fault at start-up:							
 Contact A53 for selection of signal type is set incorrectly. Display 2.2 Fut extension is set incorrectly for 		Set the contact correctly according to section 6.3.5 of the CUE installation and operating instructions.					
Display 3.3, Ext. setpoint, is set incorrectly for the signal in question.		Check the setting in display 3.3, Ext. setpoint.					
 The external setpoint signal is connected incorrectly. Fault after start-up: 		Connect the signal correctly according to section 6.3 of the CUE installation and operating instructions.					
 Incorrect voltage supply to the external setpoint signal. 		 If the voltage is not okay, contact Grundfos Service. If the voltage is okay, check if there is minimum 4 mA or 1 V between terminals 53 and 55. If yes, contact Grundfos Service. 					
5. Signal transmitter or signal cable defective.		If the cable is missing, or the signal transmitter is defective, contact Grundfos Service.					
148/2007 149/2008	Too high bearing temperature		W	- Stop	Aut. Aut.		
 The motor is dirty. The fan is defective. The bearing is not lubricated correctly. The sensor or its cable is defective. The temperature sensor connected to terminal 5 or 8 of the MCB 114 is outside the monitoring range. 		 Replace the fan. Check the lubrication of the bearing. Check the sensor and cable. a) Check the connection according to section 6.5 of the CUE installation and operating instructions. b) Check that there are 24 VDC between terminals 4 and 6 or 7 and 9 of the MCB 114. The voltage is not okay, contact Grundfos Service. The voltage is okay, check the sensor resistance as described below. c) Measure the sensor resistance using an ohmmeter: Type Pt100: If the resistance is less than 80 Ohm (corresponding to -50 °C or -58 °F) or greater than 240 Ohm (corresponding to 200 °C or 392 °F), the sensor is defective and must be replaced. At 20 °C, the resistance must be 107 Ohm. Type Pt1000: If the resistance is less than 800 Ohm (corresponding to -50 °C or -58 °F) or greater than 1773 Ohm (corresponding to 200 °C or 392 °F), the sensor is defective and must be replaced. At 20 °C (68 °F), the resistance must be 1077 Ohm. 					
		If the sensor is not defective, contact Grundfos Service.					
155/33	Inrush fault		А	Stop	Aut.		
Permissible • CUE en • CUE en 1. The CU interrup	um number of cut-ins has been exceeded. number of cut-ins: closure A: 2/minute. closures B and C: 1/minute. IE is started/stopped by connecting/ ting the mains supply. s a fault in the main connection of the	Make sure to use a digital input (terminal 18, start/stop) for external control of start/stop. Tighten the supply terminals 91, 92 and 93. (See the correct tightening torque in the CUE installation and operating instructions.)					
	a fault in the CUE.	Contact Grundfos Service.					

be think innovate

ELECTRONICS PRODUCTS MAINTENANCE AND TROUBLE SHOOTING - CU 331SP / CUE

Alarm code	Fault indication		Alarm	Alarm action	Reset	
Cause/exp	lanation	Remedy				
175/2014	Temperature sensor 2 outside range		А	1)	Aut.	
MCB 114 s	ature sensor connected to terminal 8 in the ensor input module measures a value °C (-58 °F) or over 200 °C (392 °F).					
1. The sensor has been connected incorrectly.		Check the connection according to section 6.5 of the CUE installation an operating instructions.				
2. The supply to the sensor is incorrect.		 Check that there are 24 VDC between terminals 7 and 9 of the MCB 114. If the voltage is not okay, contact Grundfos Service. If the voltage is okay, check the sensor resistance as described below. 				
3. The se	nsor is defective.	 Measure the sensor resista Type Pt100: If the resistance is less -58 °F) or greater than 392 °F), the sensor is (68 °F), the resistance Type Pt1000: If the resistance is less -58 °F) or greater than 392 °F), the sensor is (68 °F), the resistance 	s than 80 Of 240 Ohm (d defective an must be 10 s than 800 C 1773 Ohm defective an must be 10	am (corresponding to corresponding to 200 nd must be replaced 7 Ohm. Ohm (corresponding to 20 nd must be replaced 77 Ohm.) °C or . At 20 °C to –50 °C or)0 °C or	
240/2006	Relubricate the motor bearings		W	-	Man.	
	has reached the factory-set number of ours for relubrication of motor bearings.	Lubricate the motor bearing Motor bearing	gs, and conf	rm the lubrication in c	display 3.20,	
241/3	Motor phase failure		W	-	Aut.	
No motor is	connected to the output of the CUE.	Connect a motor to the CU	IE.			
241/30	Motor phase failure		А	Stop	Aut.	
Motor cable missing.	e between CUE terminal U and the motor	Switch off the CUE, and ch	neck motor p	hase U.		
241/31	Motor phase failure		А	Stop	Aut.	
Motor cable missing.	e between CUE terminal V and the motor	Switch off the CUE, and ch	neck motor p	hase V.		
241/32	Motor phase failure		А	Stop	Aut.	
Motor cable missing.	e between CUE terminal W and the motor	Switch off the CUE, and ch	neck motor p	hase W.		
242/-	AMA did not succeed		W	-	Aut.	
Fault indications concerning AMA (Automatic Motor Adaptation)		AMA only takes place in the start-up and is only of peripheral importance optimum operation. Reset the warning, and continue.				

If this is not possible, contact Grundfos Service.

GRUNDFOS GROUNDWATER CONTRACTOR TECHNICAL HOTLINE

When you need help with any Groundwater products CALL:

> 8AM - 8PM Eastern 7AM - 7PM Central

6AM - 6PM Mountain 5AM - 5PM Pacific

844-824-8953 gwhotline@grundfos.com

Visit grundfos.us/pei to learn more about Department of Energy (DOE) pump energy index (PEI) requirements and PEI ratings on specific Grundfos models.

Grundfos Americas Brooksire, TX 77423 www.grundfos.us www.grundfos.ca www.grundfos.mx